8.函數(shù)y=2sin($\frac{π}{3}-\frac{x}{3}$)的單調(diào)遞增區(qū)間是(  )
A.[-$\frac{π}{2}$+2kπ,$\frac{π}{2}$+2kπ](k∈Z)B.[$\frac{π}{2}+2kπ$,$\frac{3}{2}$π+2kπ](k∈Z)
C.[$\frac{5π}{2}$+6kπ,$\frac{11π}{2}$+6kπ](k∈Z)D.[-$\frac{π}{2}$+6kπ,$\frac{5}{2}$π+6kπ](k∈Z)

分析 利用誘導(dǎo)公式可得y=-2sin($\frac{x}{3}$-$\frac{π}{3}$),由2kπ+$\frac{π}{2}$≤$\frac{x}{3}$-$\frac{π}{3}$≤2kπ+$\frac{3π}{2}$,k∈Z,即可解得函數(shù)y=2sin($\frac{π}{3}-\frac{x}{3}$)的單調(diào)遞增區(qū)間.

解答 解:∵y=2sin($\frac{π}{3}-\frac{x}{3}$)=-2sin($\frac{x}{3}$-$\frac{π}{3}$),
∴由2kπ+$\frac{π}{2}$≤$\frac{x}{3}$-$\frac{π}{3}$≤2kπ+$\frac{3π}{2}$,k∈Z,解得函數(shù)y=2sin($\frac{π}{3}-\frac{x}{3}$)的單調(diào)遞增區(qū)間是:[6kπ+$\frac{5π}{2}$,6kπ+$\frac{11π}{2}$],k∈Z.
故選:C.

點評 本題主要考查了誘導(dǎo)公式的應(yīng)用,考查了正弦函數(shù)的單調(diào)性,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.解不等式:-x2-$\sqrt{2}$•x+4≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知f(x)為偶函數(shù),當(dāng)x≥0時,f(x)=-(x-1)2+1,則滿足f[f(a)+$\frac{1}{2}$]=$\frac{1}{2}$的實數(shù)a的個數(shù)為( 。
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知sinx+siny=$\frac{2}{3}$,則$\frac{1}{6}$+siny-$\frac{1}{2}$cos2x的取值范圍是[$\frac{1}{12}$,$\frac{7}{9}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)f(x)=log${\;}_{\frac{1}{2}}$(2sin$\frac{x}{2}$).
(1)求這個函數(shù)的單調(diào)遞減區(qū)間;
(2)求使f(x)<0的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知二次函數(shù)f(x)=ax2+bx+c,滿足f(2)=0,f(-5)=0,f(0)=1,求f(x)的表達式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知向量|$\overrightarrow{a}$|=2,|$\overrightarrow$|=4,|$\overrightarrow{c}$|=1,($\overrightarrow{a}-\overrightarrow{c}$)•($\overrightarrow-\overrightarrow{c}$)=$\overrightarrow{0}$,則|$\overrightarrow{a}-\overrightarrow$|的最大值為$\sqrt{34}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.$\frac{sin15°+cos15°}{sin15°-cos15°}$的值為-$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在△ABC中,AB=5,AC=6,點P是△ABC的外接圓圓心,則$\overrightarrow{AP}$•$\overrightarrow{B{C}_{\;}}$=$\frac{11}{2}$.

查看答案和解析>>

同步練習(xí)冊答案