【題目】在平面直角坐標系xOy中,圓O:與坐標軸分別交于A1,A2,B1,B2(如圖).
(1)點Q是圓O上除A1,A2外的任意點(如圖1),直線A1Q,A2Q與直線交于不同的兩點M,N,求線段MN長的最小值;
(2)點P是圓O上除A1,A2,B1,B2外的任意點(如圖2),直線B2P交x軸于點F,直線A1B2交A2P于點E.設A2P的斜率為k,EF的斜率為m,求證:2m﹣k為定值.
(圖1) (圖2)
【答案】(1)2;(2)證明見解析。
【解析】
(1)設A2Q的斜率為k,求出直線A1Q和A2Q的方程,得出M,N的坐標,從而得出MN關于k的表達式,進而得出MN的最小值;
(2)求出直線方程,得出E、F的坐標,進而得出m與k的關系,從而得出結論.
(1)由題設可以得到直線的斜率存在設方程為,
直線的方程為,
由,解得;由,解得
所以,直線與直線的交點
直線與直線的交點,所以.
當時, ,等號成立的條件是
當時, ,等號成立的條件是.
故線段長的最小值是2.
(2)法1:由題意可知,
的斜率為,∴直線的方程為,由得
則直線的方程為,令,則,即
∵直線的方程為,由解得
∴,
∴的斜率,
∴ (定值).
法2:設, ,
,
所以直線方程:
:直線方程,
則,得
而,得
,
則 (定值)。
科目:高中數(shù)學 來源: 題型:
【題目】在數(shù)列中,若(,,p為常數(shù)),則稱為“等方差數(shù)列”.下列是對“等方差數(shù)列”的判斷,正確的是( )
A.不是等方差數(shù)列;
B.若既是等方差數(shù)列,又是等差數(shù)列,則該數(shù)列為常數(shù)列;
C.已知數(shù)列是等方差數(shù)列,則數(shù)列是等方差數(shù)列;
D.若是等方差數(shù)列,則(,k為常數(shù))也是等方差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線和,過拋物線上一點作兩條直線與分別相切于兩點,分別交拋物線于兩點.
(1)當的角平分線垂直軸時,求直線的斜率;
(2)若直線在軸上的截距為,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓的方程為(x-1)2+(y-1)2=9,P(2,2)是該圓內(nèi)一點,過點P的最長弦和最短弦分別為AC和BD,則四邊形ABCD的面積是______ .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】袋中裝有紅球3個、白球2個、黑球1個,從中任取2個,則互斥而不對立的兩個事件是
A. 至少有一個白球;都是白球 B. 至少有一個白球;至少有一個紅球
C. 至少有一個白球;紅、黑球各一個 D. 恰有一個白球;一個白球一個黑球
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設數(shù)列的前n項和為,已知,().
(1)求證:數(shù)列為等比數(shù)列;
(2)若數(shù)列滿足:,.
① 求數(shù)列的通項公式;
② 是否存在正整數(shù)n,使得成立?若存在,求出所有n的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有1998名運動員號碼為1~1998這1998個自然數(shù),從中選出若干名運動員參加儀仗隊,但要使剩下的運動員中沒有一個人的號碼數(shù)等于另外兩人的號碼數(shù)的乘積.那么,選為儀仗隊的運動員至少能有多少人?給出你的選取方案,并簡述理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,某公園內(nèi)有一個以O為圓心,半徑為5百米,圓心角為的扇形人工湖OAB,OM、ON是分別由OA、OB延伸而成的兩條觀光道.為便于游客觀光,公園的主管部門準備在公園內(nèi)增建三條觀光道,其中一條與相切點F,且與OM、ON分別相交于C、D,另兩條是分別和湖岸OA、OB垂直的FG、FH (垂足均不與O重合).
(1) 求新增觀光道FG、FH長度之和的最大值;
(2) 在觀光道ON段上距離O為15百米的E處的道路兩側各有一個大型娛樂場,為了不影響娛樂場平時的正常開放,要求新增觀光道CD的延長線不能進入以E為圓心,2.5百米為半徑的圓形E的區(qū)域內(nèi).則點D應選擇在O與E之間的什么位置?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com