A. | $\sqrt{3}$-2 | B. | 2-$\sqrt{3}$ | C. | -2+$\sqrt{3}$ | D. | -2-$\sqrt{3}$ |
分析 由已知求得tanα,再由兩角和的正切求得答案.
解答 解:∵tan(α+β-$\frac{π}{4}$)=$\frac{1}{2}$,tan(β-$\frac{π}{4}$)=-$\frac{1}{3}$,
∴tanα=tan[(α+β-$\frac{π}{4}$)-($β-\frac{π}{4}$)]=$\frac{tan(α+β-\frac{π}{4})-tan(β-\frac{π}{4})}{1+tan(α+β-\frac{π}{4})tan(β-\frac{π}{4})}$
=$\frac{\frac{1}{2}+\frac{1}{3}}{1-\frac{1}{2}×\frac{1}{3}}=1$,
∴tan(α+$\frac{π}{3}$)=$\frac{tanα+tan\frac{π}{3}}{1-tanα•tan\frac{π}{3}}=\frac{\sqrt{3}+1}{1-\sqrt{3}}$=$-2-\sqrt{3}$.
故選:D.
點評 本題考查兩角和與差的正切函數(shù),是基礎(chǔ)的計算題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [0,$\frac{3π}{8}$] | B. | [$\frac{3π}{8}$,$\frac{7π}{8}$] | C. | [0,$\frac{3π}{8}$]和[$\frac{7π}{8}$,π] | D. | [$\frac{7π}{8}$,π] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com