8.若指數(shù)函數(shù)f(x)的圖象過點(diǎn)(-2,4),則f(-3)=8.

分析 設(shè)出指數(shù)函數(shù)y=f(x)的解析式,利用待定系數(shù)法求出f(x)的解析式,再計(jì)算f(-3)的值.

解答 解:設(shè)指數(shù)函數(shù)y=f(x)=ax(a>0且a≠1),
其圖象過點(diǎn)(-2,4),
∴a-2=4,
解得a=$\frac{1}{2}$;
∴f(x)=${(\frac{1}{2})}^{x}$,
f(-3)=${(\frac{1}{2})}^{-3}$=8.
故答案為:8.

點(diǎn)評(píng) 本題考查了用待定系數(shù)法求指數(shù)函數(shù)解析式的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在邊長(zhǎng)為3的正方形ABCD內(nèi)隨機(jī)取點(diǎn)P,則點(diǎn)P到正方形各頂點(diǎn)的距離都大于1的概率為1-$\frac{π}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在△ABC中,角A,B,C所對(duì)的三邊分別為a,b,c,B=$\frac{π}{3}$,且b=3$\sqrt{3}$,a=2
(1)求sin2A;
(2)求邊c的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)f(x)=$\left\{\begin{array}{l}{x+2,(x≤0)}\\{(\frac{1}{2})^{x},(x>0)}\end{array}\right.$,則 f[f (-1)]=( 。
A.$\frac{1}{2}$B.1C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)f(x)=$\left\{\begin{array}{l}{2{e}^{x-1}(x<2)}\\{\frac{1}{2}+lnx(x≥2)}\end{array}\right.$,則f(f(e))的值為( 。
A.0B.$\sqrt{e}$C.2$\sqrt{e}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)$f(x)=Asin(ωx+ϕ)(A>0,ω>0,0<ϕ<\frac{π}{2})$的圖象經(jīng)過三點(diǎn)$({0,\frac{1}{8}}),({\frac{5}{12},0}),({\frac{11}{12},0})$,在區(qū)間$({\frac{5}{12},\frac{11}{12}})$內(nèi)有唯一的最小值.
(Ⅰ)求出函數(shù)f(x)=Asin(ωx+ϕ)的解析式;
(Ⅱ)求函數(shù)f(x)在R上的單調(diào)遞增區(qū)間和對(duì)稱中心坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若函數(shù)f(x)=3sin($\frac{1}{2}$x+$\frac{π}{3}$),則f(x)的周期是4π;f(π)=$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,已知點(diǎn)P是平行四邊形ABCD所在平面外的一點(diǎn),E、F分別是PA、BD上的點(diǎn)且E、F分別是PA、BD的中點(diǎn).求證:EF∥平面PBC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知tan(α+β-$\frac{π}{4}$)=$\frac{1}{2}$,tan(β-$\frac{π}{4}$)=-$\frac{1}{3}$,則tan(α+$\frac{π}{3}$)=( 。
A.$\sqrt{3}$-2B.2-$\sqrt{3}$C.-2+$\sqrt{3}$D.-2-$\sqrt{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案