16.已知A(4,0),B(2,2)為橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1內(nèi)的點(diǎn),M是橢圓上的動點(diǎn),則|MA|+|MB|的最小值是( 。
A.10+2$\sqrt{10}$B.10+$\sqrt{10}$C.10-2$\sqrt{10}$D.10-$\sqrt{10}$

分析 由橢圓的定義可知,MA+MB=10+|MB|-|MF|.當(dāng)M在直線BF與橢圓交點(diǎn)上時(shí),在第一象限交點(diǎn)時(shí)有|MB|-|MF|=-|BF|,在第三象限交點(diǎn)時(shí)有|MB|-|MF|=|BF|.顯然當(dāng)M在直線BF與橢圓第一象限交點(diǎn)時(shí),|MA|+|MB|有最小值.

解答 解:A為橢圓右焦點(diǎn),左焦點(diǎn)F(-4,0),B在橢圓內(nèi),
∴|MA|+|MF|=2a=10,
于是|MA|+|MB|=10+|MB|-|MF|.
當(dāng)M不在直線BF與橢圓交點(diǎn)上時(shí),M、F、B三點(diǎn)構(gòu)成三角形,
于是|MB|-|MF|<|BF|,
而當(dāng)M在直線BF與橢圓交點(diǎn)上時(shí),
在第一象限交點(diǎn)時(shí),有|MB|-|MF|=-|BF|,
在第三象限交點(diǎn)時(shí)有|MB|-|MF|=|BF|.
顯然當(dāng)M在直線BF與橢圓第一象限交點(diǎn)時(shí),|MA|+|MB|有最小值,
∴最小值|MA|+|MB|=10+|MB|-|MF|=10-|BF|=10-$\sqrt{(2+4)^{2}+(2-0)^{2}}$=10-2$\sqrt{10}$,
故答案為:10-2$\sqrt{10}$.

點(diǎn)評 本題考查橢圓的定義及最值的求法,注意轉(zhuǎn)化思想,以及三點(diǎn)共線求最值的方法,解題時(shí)要熟練掌握定義法的運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)=ex(x2+2ax+b)在x=-1處取得極大值t,則t的取值范圍是(  )
A.($\frac{2}{e}$,+∞)B.(-∞,$\frac{2}{e}$)C.(-$\frac{2}{e}$,+∞)D.(-∞,-$\frac{2}{e}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.二項(xiàng)式${(3{x^2}-\frac{2}{{\root{3}{x}}})^7}$展開式中含有常數(shù)項(xiàng),則常數(shù)項(xiàng)是第( 。╉(xiàng).
A.6B.5C.8D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,在平行四邊形ABCD中,AB=4,AD=2,∠BAD=60°,E,F(xiàn)分別為AB,BC上的點(diǎn),且AE=2EB,CF=2FB.
(1)若$\overrightarrow{DE}$=x$\overrightarrow{AB}$+y$\overrightarrow{AD}$,求x,y的值;
(2)求$\overrightarrow{AB$•$\overrightarrow{DE}$的值;
(3)求cos∠BEF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.當(dāng)x∈(0,+∞)時(shí),函數(shù)f(x)=$\frac{x}{e^x}$的值域?yàn)?(0,\frac{1}{e}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=cos(x-$\frac{π}{3}$)+2sin2$\frac{x}{2}$,x∈R.
(1)求函數(shù)f(x)的值域;
(2)記△ABC的內(nèi)角A、B、C的對邊分別為a、b、c,若f(B)=1,b=1,c=$\sqrt{3}$,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知直線l經(jīng)過直線x-y+2=0和2x+y+1=0的交點(diǎn),且直線l與直線x-3y+2=0平行,則直線l的方程為x-3y+4=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知正項(xiàng)等比數(shù)列{an}的前n項(xiàng)和為Sn,且$\frac{S_4}{S_2}$=10,a3=9.
(1)求數(shù)列{an}的通項(xiàng)公式與前n項(xiàng)和為Sn;
(2)若數(shù)列{bn}的通項(xiàng)公式為$\frac{b_n}{{2{a_n}}}$=n-3,
(。┣髷(shù)列{bn}的前n項(xiàng)和為Tn
(ⅱ)探究:數(shù)列{bn}是否有最小項(xiàng)?若沒有,請通過計(jì)算得到最小項(xiàng)的項(xiàng)數(shù);若沒有,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知數(shù)列$\sqrt{2},\sqrt{5},2\sqrt{2},\sqrt{11}$,…則$2\sqrt{17}$是它的第( 。╉(xiàng).
A.21B.22C.23D.24

查看答案和解析>>

同步練習(xí)冊答案