11.執(zhí)行如圖所示的程序框圖,如果輸入的x,t均為2,則輸出的M等于( 。
A.$\frac{1}{2}$B.$\frac{3}{2}$C.$\frac{5}{2}$D.$\frac{7}{2}$

分析 根據(jù)條件,依次運(yùn)行程序,即可得到結(jié)論.

解答 解:當(dāng)x=2時(shí),M=2,1-$\frac{1}{x}$=$\frac{1}{2}$<2;
x=$\frac{1}{2}$,M=$\frac{5}{2}$,1-$\frac{1}{x}$=-1<2;
x=-1,M=$\frac{3}{2}$,1-$\frac{1}{x}$=2≥2;
程序結(jié)束.輸出M=$\frac{3}{2}$,
故選:B.

點(diǎn)評(píng) 本題主要考查程序框圖的識(shí)別和判斷,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知tanα,tanβ是方程6x2-5x+1=0兩個(gè)根且0<α<$\frac{π}{2}$,π<β<$\frac{3π}{2}$,則α+β的值為(  )
A.$\frac{π}{4}$B.$\frac{3π}{4}$C.$\frac{5π}{4}$D.$\frac{7π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知f($\frac{x+1}{x}$)=$\frac{2x+1}{{x}^{2}}$,則(  )
A.f(x)=x2+1(x≠0)B.f(x)=x2+1(x≠1)C.f(x)=x2-1(x≠1)D.f(x)=x2-1(x≠0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.如圖,在四棱錐P-ABCD中,PA垂直于底面ABCD,底面ABCD是邊長(zhǎng)為2的菱形,且∠ABC=45°,PA=AB,則直線AP與平面PBC所成的角的正切值是$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知($\sqrt{x}$+$\frac{a}{\root{3}{x}}$)5的展開(kāi)式中的常數(shù)項(xiàng)為80,則x${\;}^{\frac{5}{6}}$的系數(shù)為40.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=(3x-y)2+(3-x+y)2,x∈[-1,1].
(Ⅰ)求f(x)的最大值;
(Ⅱ)關(guān)于x的方程f(x)=2y2有解,求實(shí)數(shù)y的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.設(shè)f(x)是以2為周期的奇函數(shù),且f(-$\frac{2}{5}$)=3,若sinα=$\frac{\sqrt{5}}{5}$,則f(4cos2α)的值等于-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.現(xiàn)有10張獎(jiǎng)券,其中4張有獎(jiǎng),若有4人購(gòu)買(mǎi),每人一張,至少有一人中獎(jiǎng)的概率是$\frac{13}{14}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.直線l斜率為$\frac{1}{2}$,傾斜角為α,將l繞它與x軸的交點(diǎn)逆時(shí)針?lè)较蛐D(zhuǎn)α后所得直線的斜率為k,則將k值執(zhí)行如圖所示程序后,輸出S值為( 。
A.$\frac{4}{3}$B.-$\frac{4}{3}$C.$\frac{\sqrt{3}}{3}$D.$\sqrt{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案