13.定義某種運(yùn)算?,S=a?b的運(yùn)算原理如圖,則式子6?3+3?4=20.

分析 通過程序框圖判斷出S=a?b的解析式,求出6?3+3?4的值.

解答 解:有框圖知S=a?b=$\left\{\begin{array}{l}{a×(b-1)}&{a>b}\\{b×(a-1)}&{a≤b}\end{array}\right.$,
∴6?3+3?4=6×(3-1)+4×(3-1)=20.
故答案為:20.

點(diǎn)評(píng) 新定義題是近幾年常考的題型,要重視.解決新定義題關(guān)鍵是理解題中給的新定義.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.針對(duì)時(shí)下的網(wǎng)購熱,某單位對(duì)“喜歡網(wǎng)購與職工性別是否有關(guān)”進(jìn)行了一次調(diào)查,其中男職工有60人,女職工人數(shù)是男職工人數(shù)的$\frac{1}{2}$,喜歡網(wǎng)購的男職工人數(shù)是男職工人數(shù)的$\frac{1}{6}$,喜歡網(wǎng)購的女職工人數(shù)是女職工人數(shù)的$\frac{2}{3}$.則K2=22.5.
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某公司是一家專做產(chǎn)品A的國內(nèi)和國外同步銷售的企業(yè),每一批產(chǎn)品A上市銷售40天就可以全部售完,該公司對(duì)第一批產(chǎn)品A上市后的國內(nèi)外市場(chǎng)的銷售情況進(jìn)行了跟蹤調(diào)查,調(diào)查結(jié)果如圖①、圖②、圖③所示,其中圖①中的折線表示的是國內(nèi)市場(chǎng)的日銷售量與上市時(shí)間的關(guān)系;圖②中的拋物線表示國外市場(chǎng)的日銷售量與上市時(shí)間的關(guān)系;圖③中的折線表示的是每件產(chǎn)品A的銷售利潤與上市時(shí)間的關(guān)系(國內(nèi)外市場(chǎng)相同).

(1)分別寫出國內(nèi)市場(chǎng)的日銷售量f(t)、國外市場(chǎng)的日銷售量g(t)與第一批產(chǎn)品A的上市時(shí)間的函數(shù)關(guān)系式,并寫出每件產(chǎn)品A的銷售利潤q(t) 與第一批產(chǎn)品A的上市時(shí)間的函數(shù)關(guān)系式;
(2)第一批產(chǎn)品A上市后,問哪一天這家公司的日銷售利潤最大?最大是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.棱長為4的正方體ABCD-A1B1C1D1中,P,Q是CC1上兩動(dòng)點(diǎn),且PQ=1,則三棱錐P-AQD的體積為( 。
A.8B.$\frac{16}{3}$C.3D.$\frac{8}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.如圖,圓柱OO′的底面半徑為2cm,高為4cm,且P為母線B′B的重點(diǎn),∠AOB=120°,則一螞蟻從A點(diǎn)沿圓柱表面爬到P點(diǎn)的最短路程為$\frac{2}{3}\sqrt{4{π}^{2}+9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知f(x)=-x2+ax-a+6,x∈[0,1].
(1)求f(x)的最小值g(a);
(2)若g(a)>a2,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知如圖,在Rt△ABC中,∠A=60°,AB=6,點(diǎn)D、E是斜邊AB上兩點(diǎn).
(1)當(dāng)點(diǎn)D是線段AB靠近A的一個(gè)三等點(diǎn)時(shí),求$\overrightarrow{CD}$•$\overrightarrow{CA}$的值;
(2)當(dāng)點(diǎn)D、E在線段AB上運(yùn)動(dòng)時(shí),且∠DCE=30°,設(shè)∠ACD=θ,試用θ表示△DCE的面積S,并求S的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.(1)sin120°•cos330°+sin(-690°)•cos(-660°)+tan675°=0;
(2)已知5cosθ=sinθ,則tan2θ=-$\frac{5}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知命題p:?x∈R,使x2+2x+5≤4;命題q:當(dāng)$x∈({0,\frac{π}{2}})$時(shí),f(x)=sinx+$\frac{4}{sinx}$的最小值為4.下列命題是真命題的是( 。
A.p∧(¬q)B.(¬p)∧(¬q)C.(¬p)∧qD.p∧q

查看答案和解析>>

同步練習(xí)冊(cè)答案