如圖在四棱錐P-ABCD中,底面ABCD是正方形,O是正方形的中心,
PO⊥底面ABCD,E是PC的中點(diǎn).求證:
(1)PA∥平面BDE;
(2)AC⊥PB.
考點(diǎn):直線與平面垂直的性質(zhì),直線與平面平行的判定
專題:空間位置關(guān)系與距離
分析:(1)通過(guò)證明PA∥EO,利用直線與平面平行的判定定理證明PA∥平面BDE;
(2)通過(guò)證明AC⊥平面PBD,利用直線與平面垂直的性質(zhì)定理證明AC⊥PB.
解答: 證明:(1)連接AC、OE,AC∩BD=O,在△PAC中,
∵E為PC中點(diǎn),O為AC中點(diǎn).
∴PA∥EO,又∵EO?平面BDE,PA?平面BDE,∴PA∥平面BDE 
(2)∵PO⊥底面ABCD,AC?平面ABCD∴PO⊥AC.       
∵底面ABCD是正方形,∴BD⊥AC 
又BD∩PO=O∴AC⊥平面PBD.  
又PB?平面PBD,∴AC⊥PB
點(diǎn)評(píng):本題考查直線與平面平行的判定定理以及直線與平面垂直的性質(zhì)定理的應(yīng)用,考查空間想象能力邏輯推理能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

五名學(xué)生和五名老師站成一排照相,五名老師不能相鄰的排法有( 。
A、2A
 
5
5
A
 
5
5
B、A
 
5
5
A
 
5
6
C、2A
 
5
5
A
 
5
6
D、A
 
5
5
A
 
5
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

復(fù)數(shù)z=log2(m2-3m-3)+ilog2(3-m)(m∈R),如果a是純虛數(shù),則m的值為( 。
A、-1或4B、-1C、4D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}是等差數(shù)列,數(shù)列{bn}的前n項(xiàng)和Sn滿足Sn=
3
2
(bn-1)
且a2=b1,a5=b2
(Ⅰ)求數(shù)列{an}和{bn}的通項(xiàng)公式:
(Ⅱ)設(shè)Tn為數(shù)列{Sn}的前n項(xiàng)和,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若方程
2x+x-a
=x(a∈R)在[-1,1]有解,則a的取值范圍是( 。
A、[1,2]
B、[-
1
2
,1
]
C、[1,3]
D、[-
1
2
,3
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的右焦點(diǎn)為F(1,0),短軸的一個(gè)端點(diǎn)B到F的距離等于焦距.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)過(guò)點(diǎn)F的直線l和橢圓交于兩點(diǎn)A,B,且
AF
=2
FB
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線兩條漸近線的夾角為60°,求該雙曲線的離心率是多少.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

1-2x
x+4
≥0的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列命題:
(1)如果平面α與平面β相交,那么它們只有有限個(gè)公共點(diǎn);
(2)過(guò)一條直線的平面有無(wú)數(shù)多個(gè);
(3)兩個(gè)平面的交線可能是一條線段;
(4)兩個(gè)相交平面有不在同一條直線上的三個(gè)公共點(diǎn);
(5)經(jīng)過(guò)空間任意三點(diǎn)有且僅有一個(gè)平面;
(6)如果兩個(gè)平面有三個(gè)不共線的公共點(diǎn),那么這兩個(gè)平面就重合為一個(gè)平面.
其中所有真命題序號(hào)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案