19.關(guān)于直線2x-y=2與直線x+2y=1的關(guān)系,正確的說法是(  )
A.重合B.相交但不垂直C.垂直D.平行

分析 分別求出直線的斜率,得到斜率乘積等于-1,即可得到兩直線垂直.

解答 解:直線2x-y=2的斜率為2,直線x+2y=1的斜率為-$\frac{1}{2}$,
由于2×(-$\frac{1}{2}$)=-1,
故直線2x-y=2與直線x+2y=1的垂直,
故選:C.

點(diǎn)評(píng) 本題考查了兩直線的位置關(guān)系,求出斜率時(shí)關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.(1)解不等式|3-2x|≤5;
(2)已知0<x<4.5,求x2(9-2x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)Sn是數(shù)列{an}的前n項(xiàng)和,且a1=-2,Sn=2an+2,則an=-2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,5a4+4a5=-22,S6=2a4-5
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)${b_n}={2^{{a_n}-2}}-n$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若$\overrightarrow{a}$=(-3,4),$\overrightarrow$=(2,-1),若($\overrightarrow{a}$-x$\overrightarrow$)⊥($\overrightarrow{a}$-$\overrightarrow$),則x等于(  )
A.-23B.-$\frac{7}{4}$C.-$\frac{7}{3}$D.$\frac{7}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知數(shù)列{an}是等差數(shù)列,數(shù)列{bn}是各項(xiàng)均為正數(shù)的等比數(shù)列,且a1=b1=3,a2+b2=14,a3+a4+a5=b3
(Ⅰ)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)cn=an+bn,n∈N*,求數(shù)列{cn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)n=${∫}_{0}^{2}$3x2dx,則(x-$\frac{1}{2x}$)n的展開式中的常數(shù)項(xiàng)為(  )
A.-$\frac{35}{8}$B.$\frac{35}{8}$C.-70D.70

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.等比數(shù)列{an}同時(shí)滿足下列條件:a1+a6=33;a3a4=32.
(1)求數(shù)列{an}的通項(xiàng);
(2)若4a2,2a3,a4構(gòu)成等差數(shù)列,求{an}的前6項(xiàng)和S6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖所示,在幾何體ABCDE中,△ABC是等腰直角三角形,∠ACB=90°,四邊形ACED是直角梯形,∠DAC=90°,AD∥CE,AD=AC=2CE=2,BC⊥CE,點(diǎn)F是AB的中點(diǎn).
(1)求證:CF∥平面BDE;
(2)若$\overrightarrow{BG}$=λ$\overrightarrow{BD}$,AG和平面BDE所成的角的余弦值是$\frac{1}{3}$,試確定點(diǎn)G的位置.

查看答案和解析>>

同步練習(xí)冊(cè)答案