對于無窮數(shù)列{}與{},記A={|=,},B={|=,},若同時(shí)滿足條件:①{},{}均單調(diào)遞增;②且,則稱{}與{}是無窮互補(bǔ)數(shù)列.
(1)若=,=,判斷{}與{}是否為無窮互補(bǔ)數(shù)列,并說明理由;
(2)若=且{}與{}是無窮互補(bǔ)數(shù)列,求數(shù)列{}的前16項(xiàng)的和;
(3)若{}與{}是無窮互補(bǔ)數(shù)列,{}為等差數(shù)列且=36,求{}與{}的通項(xiàng)公式.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2016年全國普通高等學(xué)校招生統(tǒng)一考試?yán)砜茢?shù)學(xué)(天津卷精編版) 題型:選擇題
已知△ABC是邊長為1的等邊三角形,點(diǎn)D,E分別是邊AB,BC的中點(diǎn),連接DE并延長到點(diǎn)F,使得DE=2EF,則的值為
(A) (B) (C) (D)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2016年全國普通高等學(xué)校招生統(tǒng)一考試文科數(shù)學(xué)(四川卷精編版) 題型:選擇題
秦九韶是我國南宋時(shí)期的數(shù)學(xué)家,普州(現(xiàn)四川省安岳縣)人,他在所著的《數(shù)書九章》中提出的多項(xiàng)式求值的秦九韶算法,至今仍是比較先進(jìn)的算法.如圖所示的程序框圖給出了利用秦九韶算法求某多項(xiàng)式值的一個(gè)實(shí)例,若輸入n,x的值分別為3,2,則輸出v的值為
(A)35 (B)20 (C)18 (D)9
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2016年全國普通高等學(xué)校招生統(tǒng)一考試?yán)砜茢?shù)學(xué)(四川卷精編版) 題型:填空題
cos2–sin2= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2016年全國普通高等學(xué)校招生統(tǒng)一考試?yán)砜茢?shù)學(xué)(四川卷精編版) 題型:選擇題
用數(shù)字1,2,3,4,5組成沒有重復(fù)數(shù)字的五位數(shù),其中奇數(shù)的個(gè)數(shù)為
(A)24 (B)48 (C)60 (D)72
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2016年全國普通高等學(xué)校招生統(tǒng)一考試文科數(shù)學(xué)(上海卷精編版) 題型:選擇題
設(shè),.若對任意實(shí)數(shù)x都有,則滿足條件的有序?qū)崝?shù)對(a,b)的對數(shù)為( ).
(A)1 (B)2 (C)3 (D)4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2016年全國普通高等學(xué)校招生統(tǒng)一考試文科數(shù)學(xué)(上海卷精編版) 題型:填空題
已知△ABC的三邊長分別為3,5,7,則該三角形的外接圓半徑等于_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2016年全國普通高等學(xué)校招生統(tǒng)一考試?yán)砜茢?shù)學(xué)(上海卷精編版) 題型:選擇題
下列極坐標(biāo)方程中,對應(yīng)的曲線為如圖的是( ).
(A) (B)
(C) (D)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2016屆貴州省高三下開學(xué)模擬文科數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,AB是的⊙O直徑,CB與⊙O相切于B,E為線段CB上一點(diǎn),連接AC、AE分別交⊙O于D、G兩點(diǎn),連接DG交CB于點(diǎn)F.
(1)求證:C、D、G、E四點(diǎn)共圓.
(2)若F為EB的三等分點(diǎn)且靠近E,EG=1,GA=3, 求線段CE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com