12.在三角形ABC中,D為底邊BC的中點(diǎn),M為AD上的任一點(diǎn),過M點(diǎn)任作一直線l分別交邊AB、AC與E,F(xiàn)(E,F(xiàn)不與端點(diǎn)重合),且$\overrightarrow{AE}=m\overrightarrow{AB},\overrightarrow{AF}=n\overrightarrow{AC}$,$\overrightarrow{AM}=k\overrightarrow{AD}$,則m,n,k滿足的關(guān)系是( 。
A.$\frac{1}{m}+\frac{1}{n}=\frac{2}{k}$B.$\frac{1}{m}+\frac{1}{n}=\frac{k}{2}$C.$\frac{1}{m}+\frac{1}{n}=\frac{1}{k}$D.m+n=k

分析 由題意,$\overrightarrow{AM}$=k$\overrightarrow{AD}$=$\frac{k}{2}$($\overrightarrow{AB}$+$\overline{AC}$)=$\frac{k}{2m}$•$\overrightarrow{AE}$+$\frac{k}{2n}$•$\overrightarrow{AF}$,利用E,M,F(xiàn)三點(diǎn)共線,可得結(jié)論.

解答 解:由題意,$\overrightarrow{AM}$=k$\overrightarrow{AD}$=$\frac{k}{2}$($\overrightarrow{AB}$+$\overline{AC}$)=$\frac{k}{2m}$•$\overrightarrow{AE}$+$\frac{k}{2n}$•$\overrightarrow{AF}$,
∵E,M,F(xiàn)三點(diǎn)共線,
∴$\frac{k}{2m}$+$\frac{k}{2n}$=1,
∴$\frac{1}{m}+\frac{1}{n}=\frac{2}{k}$,
故選:A.

點(diǎn)評(píng) 本題考查向量在幾何中的應(yīng)用,考查三點(diǎn)共線結(jié)論的運(yùn)用,考查學(xué)生的計(jì)算能力,正確替換是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若復(fù)數(shù)z滿足(z-3)(2-i)=5(i為虛數(shù)單位),則z為( 。
A.2-iB.2+iC.5-iD.5+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.一個(gè)數(shù)列的第n項(xiàng)an=[a1+(n-1)d]qn-1(q≠0),即an是一個(gè)等差數(shù)列的第n項(xiàng)與一個(gè)等比數(shù)列的第n的乘積,這樣的數(shù)列叫做“等差×等比”數(shù)列.
(1)試判斷數(shù)列an=35-2n和bn=(-2)n是否為“等差×等比”數(shù)列,如果是“等差×等比”數(shù)列,求出a1,d,q或b1,d,q的值,如果不是“等差×等比”數(shù)列,請(qǐng)說明理由;
(2)若{cn}是“等差×等比”數(shù)列,且c1=2,c2=-$\frac{5}{2}$,c3=2,求cn
(3)若dn=(35-2n)(-2)n-1,求dndn+1的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.根據(jù)圖中數(shù)據(jù),可得該幾何體的表面積是12π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),直線l與橢圓C有唯一公共點(diǎn)M,當(dāng)點(diǎn)M的坐標(biāo)為($\sqrt{3}$,$\frac{1}{2}$)時(shí),l的方程為$\sqrt{3}$x+2y-4=0.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線l的斜率為k,M在橢圓C上移動(dòng)時(shí),作OH⊥l于H,(O為坐標(biāo)原點(diǎn)),當(dāng)|OH|=$\frac{4}{5}$|OM|時(shí),求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左右焦點(diǎn)F1,F(xiàn)2與橢圓短軸的一個(gè)端點(diǎn)構(gòu)成邊長為4的正三角形.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)過橢圓C上任意一點(diǎn)P做橢圓C的切線與直線F1P的垂線F1M相交于點(diǎn)M,求點(diǎn)M的軌跡方程;
(Ⅲ)若切線MP與直線x=-2交于點(diǎn)N,求證:$\frac{{|N{F_1}|}}{{|M{F_1}|}}$為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),給定兩點(diǎn)A(1,0),B(0,-2),點(diǎn)C滿足$\overrightarrow{OC}$=α$\overrightarrow{OA}$+β$\overrightarrow{OB}$,其中α,β∈R,且α-2β=1.
(1)求點(diǎn)C的軌跡方程;
(2)設(shè)點(diǎn)C的軌跡與橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>0)交于兩點(diǎn)M,N,且以MN為直徑的圓過原點(diǎn),求證:$\frac{1}{{a}^{2}}$+$\frac{1}{^{2}}$為定值;
(3)在(2)的條件下,若橢圓的離心率不大于$\frac{\sqrt{3}}{2}$,求橢圓長軸長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.關(guān)于x的不等式$\sqrt{x}$>ax+$\frac{3}{2}$的解為{x|2<x<b},求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)=$\left\{\begin{array}{l}{|{e}^{x}-3|,(x≥0)}\\{|x+3|-1,(x<0)}\end{array}\right.$,則關(guān)于x的方程f(x)=f(x-2)解的個(gè)數(shù)為(  )
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案