17.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左右焦點(diǎn)F1,F(xiàn)2與橢圓短軸的一個(gè)端點(diǎn)構(gòu)成邊長為4的正三角形.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)過橢圓C上任意一點(diǎn)P做橢圓C的切線與直線F1P的垂線F1M相交于點(diǎn)M,求點(diǎn)M的軌跡方程;
(Ⅲ)若切線MP與直線x=-2交于點(diǎn)N,求證:$\frac{{|N{F_1}|}}{{|M{F_1}|}}$為定值.

分析 (Ⅰ)由題意求出a,b的值則求出橢圓方程.
(Ⅱ)設(shè)出切線方程,表示出MF1的方程,繼而根據(jù)條件求出軌跡方程.
(Ⅲ)依題意及(Ⅱ),點(diǎn)M、N的坐標(biāo)可表示為M(-8,yM)、N(-2,yN),點(diǎn)N在切線MP上,由①式得   ${y_N}=\frac{{3({x_0}+8)}}{{2{y_0}}}$,點(diǎn)M在直線MF1上,由②式得  ${y_M}=\frac{{6({x_0}+2)}}{y_0}$,由上述2式求解.

解答 解:(Ⅰ)依題意,2c=a=4,∴c=2,b=$2\sqrt{3}$;
∴橢圓C的標(biāo)準(zhǔn)方程為$\frac{x^2}{16}+\frac{y^2}{12}=1$;    …(2分)
(Ⅱ)設(shè)P(x0,y0),由(Ⅰ),F(xiàn)1(-2,0),設(shè)P(x0,y0),M(x,y)
過橢圓C上過P的切線方程為:$\frac{{{x_0}x}}{16}+\frac{{{y_0}y}}{12}=1$,①
直線F1P的斜率${k_{{F_1}P}}=\frac{y_0}{{{x_0}+2}}$,則直線MF1的斜率${k_{M{F_1}}}=-\frac{{{x_0}+2}}{y_0}$,
于是,則直線MF1的方程為:$y=-\frac{{{x_0}+2}}{y_0}(x+2)$,
即  yy0=-(x0+2)(x+2),②
①、②聯(lián)立,解得 x=-8,
∴點(diǎn)M的軌跡方程為 x=-8;    …(8分)
(Ⅲ)依題意及(Ⅱ),點(diǎn)M、N的坐標(biāo)可表示為M(-8,yM)、N(-2,yN),
點(diǎn)N在切線MP上,由①式得   ${y_N}=\frac{{3({x_0}+8)}}{{2{y_0}}}$,
點(diǎn)M在直線MF1上,由②式得  ${y_M}=\frac{{6({x_0}+2)}}{y_0}$,$|N{F}_{1}{|}^{2}={{Y}_{N}}^{2}=\frac{9({x}_{0}+8)^{2}}{4{y}^{2}}$,$|M{F}_{1}{|}^{2}=[(-2)-(-8)]^{2}+{{y}_{M}}^{2}$=$\frac{36[{{y}_{0}}^{2}+({x}_{0}+2)^{2}]}{{{y}_{0}}^{2}}$,
∴$\frac{|N{F}_{1}{|}^{2}}{|M{F}_{1}{|}^{2}}=\frac{9({x}_{0}+8)^{2}}{4{y}^{2}}•\frac{{y}^{2}}{36[{{y}_{0}}^{2}+({x}_{0}+2)^{2}]}$=$\frac{1}{16}\frac{({x}_{0}+8)^{2}}{{y}_{0}^{2}+({x}_{0}+2)^{2}}$,③
注意到點(diǎn)P在橢圓C上,即 $\frac{x_0^2}{16}+\frac{y_0^2}{12}=1$,
于是${y}_{0}=\frac{48-{x}^{2}}{4}$代人③式并整理得 $\frac{{|N{F_1}{|^2}}}{{|M{F_1}{|^2}}}=\frac{1}{4}$,
∴$\frac{{|N{F_1}|}}{{|M{F_1}|}}$的值為定值$\frac{1}{2}$.…(12分)

點(diǎn)評(píng) 本題主要考查橢圓方程和軌跡方程的求解方法和直線與圓錐曲線的綜合問題,屬于難度較大的題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在等差數(shù)列{an}中,a1=3,a17=35,則公差d=( 。
A.0B.-2C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知正項(xiàng)等差數(shù)列{an}的前n項(xiàng)和為Sn,若a1+a2+a3=12,且a22=2a1•(a3+1).
(1)求{an}的通項(xiàng)公式;
(2)設(shè)b1+b2+…+bn=n•an,求bn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知點(diǎn)H(0,-2),橢圓E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率為$\frac{{\sqrt{3}}}{2}$,F(xiàn)是橢圓E的右焦點(diǎn),直線HF的斜率為$\frac{{2\sqrt{3}}}{3}$.
(I)求橢圓E的方程;
(Ⅱ)點(diǎn)A為橢圓E的右頂點(diǎn),過B(1,0)作直線l與橢圓E相交于S,T兩點(diǎn),直線AS,AT與直線x=3分別交于不同的兩點(diǎn)M,N,求|MN|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在三角形ABC中,D為底邊BC的中點(diǎn),M為AD上的任一點(diǎn),過M點(diǎn)任作一直線l分別交邊AB、AC與E,F(xiàn)(E,F(xiàn)不與端點(diǎn)重合),且$\overrightarrow{AE}=m\overrightarrow{AB},\overrightarrow{AF}=n\overrightarrow{AC}$,$\overrightarrow{AM}=k\overrightarrow{AD}$,則m,n,k滿足的關(guān)系是(  )
A.$\frac{1}{m}+\frac{1}{n}=\frac{2}{k}$B.$\frac{1}{m}+\frac{1}{n}=\frac{k}{2}$C.$\frac{1}{m}+\frac{1}{n}=\frac{1}{k}$D.m+n=k

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右焦點(diǎn)分別為F1、F2,短軸長為2,離心率為$\frac{\sqrt{3}}{2}$.
(1)求橢圓的方程;
(2)如圖,設(shè)直線l1;y=x+m1與橢圓交于A、B兩點(diǎn),直線l2:y=x+m2與橢圓交于C、D兩點(diǎn),若四邊形ABCD是平行四邊形,求四邊形ABCD的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在平面直角坐標(biāo)系中,已知橢圓C:$\frac{x^2}{24}+\frac{{y{\;}^2}}{12}$=1,設(shè)R(x0,y0)是橢圓C上任一點(diǎn),從原點(diǎn)O向圓R:(x-x02+(y-y02=8作兩條切線,切點(diǎn)分別為P,Q.
(1)若直線OP,OQ互相垂直,且R在第一象限,求圓R的方程;
(2)若直線OP,OQ的斜率都存在,并記為k1,k2,求證:2k1k2+1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知數(shù)列{an}滿足,an+1+an=2n.
(1)當(dāng)a1=$\frac{1}{2}$時(shí),求數(shù)列{an}的前n項(xiàng)和Sn;
(2)若對(duì)任意n∈N*,都有$\frac{{{a}_{n}}^{2}+{{a}_{n+1}}^{2}}{{a}_{n}+{a}_{n+1}}$≥4成立,求a1的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{a}{2{x}^{2}},(0<|x|≤1)}\\{{a}^{x},(|x|>1)}\end{array}\right.$(a>0,a≠1),且f(1)=f(2),則f(log46)=$\frac{\sqrt{6}}{6}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案