分析 化簡可得a≤$\frac{{e}^{x}}{{x}^{2}-x+1}$,令f(x)=$\frac{{e}^{x}}{{x}^{2}-x+1}$,從而求導確定函數(shù)的單調(diào)性,從而解得.
解答 解:∵ex-a(x2-x+1)≥0,
∴a(x2-x+1)≤ex,
∴a≤$\frac{{e}^{x}}{{x}^{2}-x+1}$,
令f(x)=$\frac{{e}^{x}}{{x}^{2}-x+1}$,
則f′(x)=$\frac{{e}^{x}({x}^{2}-3x+2)}{({x}^{2}-x+1)^{2}}$,
故f(x)在(-∞,1)上是增函數(shù),在[1,2]上是減函數(shù),在(2,+∞)上是增函數(shù);
故fmax(x)=e,fmin(x)=$\frac{{e}^{2}}{3}$;
∵關(guān)于x的不等式ex-a(x2-x+1)≥0的解集為[m,n]∪[k,+∞),
∴$\frac{{e}^{2}}{3}$<a<e,
故答案為($\frac{{e}^{2}}{3}$,e).
點評 本題考查了導數(shù)的綜合應(yīng)用及不等式的解法與應(yīng)用.
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=log2x | B. | y=x-$\frac{1}{x}$ | C. | y=-x3 | D. | y=tanx |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{\sqrt{2}}{5}$ | B. | $\frac{2\sqrt{2}}{5}$ | C. | $\frac{2}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
測試指標 | [70,76) | [76,82) | [82,88) | [88,94) | [94,100] |
產(chǎn)品A | 8 | 12 | 40 | 32 | 8 |
產(chǎn)品B | 7 | 18 | 40 | 29 | 6 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com