20.復(fù)數(shù)$\frac{3+i}{1-i}$=( 。
A.1+2iB.1-2iC.2+iD.2-i

分析 利用復(fù)數(shù)的運(yùn)算法則即可得出.

解答 解:復(fù)數(shù)$\frac{3+i}{1-i}$=$\frac{(3+i)(1+i)}{(1-i)(1+i)}$=$\frac{2+4i}{2}$=1+2i,
故選:A.

點(diǎn)評 本題考查了復(fù)數(shù)的運(yùn)算法則,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)f(x)=x|x+a|+b是奇函數(shù),則( 。
A.a•b=0B.a+b=0C.a2+b2=0D.a=b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.下列命題:
①“在三角形ABC中,若sinA>sinB,則A>B”的逆命題是真命題;
②命題p:x≠2或y≠3,命題q:x+y≠5,則p是q的必要不充分條件;
③“?x∈R,x3-x2+1≤0”的否定是“?x∈R,x3-x2+1>0”;
④“若a>b,則2a>2b-1”的否命題為“若a≤b,則2a≤2b-1”;
其中正確的序號為①②④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在△ABC中,角A,B,C的對邊分別為a,b,c,若$\frac{2a-c}$=$\frac{cosC}{cosB}$,b=4,則△ABC的面積的最大值為( 。
A.4$\sqrt{3}$B.2$\sqrt{3}$C.2D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和Sn滿足8Sn=a${\;}_{n}^{2}$+4an+3(∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=$\frac{n}{(2n+1){S}_{n}}$,是否存在一個(gè)最小的常數(shù)M,使得b1+b2+…+bn<m對于任意的n∈N*均成立,若存在,求出常數(shù)m;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)關(guān)于x的一元二次方程x2+2ax+b2=0.
(1)若a是從1,2,3,4四個(gè)數(shù)中任取的一個(gè)數(shù),b是從0,1,2三個(gè)數(shù)中任取的一個(gè)數(shù),求上述方程有兩個(gè)不等實(shí)根的概率;
(2)若a是從區(qū)間[1,4]任取的一個(gè)數(shù),b是從區(qū)間[0,2]任取的一個(gè)數(shù),求上述方程有實(shí)根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知a是實(shí)數(shù),則函數(shù)$f(x)=1+\frac{1}{a}sinax$的圖象不可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.正四面體的四個(gè)面上分別寫有數(shù)字0,1,2,3把兩個(gè)這樣的四面體拋在桌面上,則露在外面的6個(gè)數(shù)字之和恰好是9的概率為$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.《九章算術(shù)》“竹九節(jié)”問題:現(xiàn)有一根9節(jié)的竹子,自上而下各節(jié)的容積成等差數(shù)列,上面4節(jié)的容積共5升,下面3節(jié)的容積共4升,則第5節(jié)的容積為( 。
A.$\frac{14}{11}$B.$\frac{85}{66}$C.$\frac{43}{33}$D.$\frac{29}{22}$

查看答案和解析>>

同步練習(xí)冊答案