9.若數(shù)列{an}滿足an-(-1)nan-1=n(n≥2,n∈N*),Sn是{an}的前n項(xiàng)和,則S40=440.

分析 由${a_n}-(-1{)^n}{a_{n-1}}=n$(n≥2),對(duì)n分類討論,可得:a2k+a2k-2=4k-1,a2k+1+a2k-1=1,分組求和即可得出.

解答 解:∵${a_n}-(-1{)^n}{a_{n-1}}=n$(n≥2),
∴當(dāng)n=2k時(shí),即a2k-a2k-1=2k,①
當(dāng)n=2k-1時(shí),即a2k-1+a2k-2=2k-1,②
當(dāng)n=2k+1時(shí),即a2k+1+a2k=2k+1,③
①+②a2k+a2k-2=4k-1,
③-①a2k+1+a2k-1=1,
S40=(a1+a3+a5+…+a39)+(a2+a4+a6+a8+…+a40)=$1×10+({7+15+23+…})=10+7×10+\frac{{10({10-1})}}{2}×8=440$.

點(diǎn)評(píng) 本題考查了遞推關(guān)系、分組求和方法,考查了分類討論方法、推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.執(zhí)行如圖所示的程序框圖,則輸出的n為( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.對(duì)于數(shù)列{an},若?m,n∈N*(m≠n),都有$\frac{{{a_n}-{a_m}}}{n-m}≥t({t為常數(shù)})$成立,則稱數(shù)列{an}具有性質(zhì)P(t).若數(shù)列{an}的通項(xiàng)公式為${a_n}={n^2}-\frac{a}{n}$,且具有性質(zhì)P(10),則實(shí)數(shù)a的取值范圍是[36,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知平面向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$,滿足$\overrightarrow{a}$⊥$\overrightarrow$,$\overrightarrow{c}$=x$\overrightarrow{a}$+y$\overrightarrow$(x,y∈R),且$\overrightarrow{a}$•$\overrightarrow{c}$>0,$\overrightarrow$•$\overrightarrow{c}$<0,則下列結(jié)論一定成立的是(  )
A.x>0,y>0B.x>0,y<0C.x<0,y>0D.x<0,y<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.不等式|x-3|+|x+1|>6的解集為(  )
A.(-∞,-2)B.(4,+∞)C.(-∞,-2)∪(4,+∞)D.(-2,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知非零向量$\overrightarrow a,\overrightarrow b$的夾角為60°,且$|{\overrightarrow a-\overrightarrow b}|=1$,則$|{\overrightarrow a+\overrightarrow b}|$的最大值是$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,若a=1,c=2(b-cosC),則△ABC周長的取值范圍是( 。
A.(1,3]B.[2,4]C.(2,3]D.[3,5]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知$\overrightarrow a=({1,-3})$,$\overrightarrow b=({3,2sinα})$,若$\overrightarrow a⊥\overrightarrow b$,則$cos({\frac{π}{2}+α})$=( 。
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.根據(jù)各已知條件,判斷△ABC解的個(gè)數(shù),并求解.
(1)a=4$\sqrt{3}$,b=4,A=120°,求B;
(2)a=4$\sqrt{2}$,b=4,A=90°,求B;
(3)a=5,b=$\frac{10\sqrt{3}}{3}$,A=60°,求B;
(4)a=20,b=20,A=45°,求B;
(5)a=28,b=46,A=27°,求B(結(jié)果精確到1°).

查看答案和解析>>

同步練習(xí)冊(cè)答案