7.角α的終邊與單位圓交于點($\frac{4}{5}$,-$\frac{3}{5}$),則cos(α-$\frac{π}{2}$)=( 。
A.$\frac{3}{5}$B.-$\frac{3}{5}$C.$\frac{4}{5}$D.-$\frac{4}{5}$

分析 化簡所求為sinα,利用三角函數(shù)的坐標(biāo)法定義得到sinα.

解答 解:由已知sinα=$-\frac{3}{5}$,又cos(α-$\frac{π}{2}$)=sinα=$-\frac{3}{5}$;
故選:B.

點評 本題考查了三角函數(shù)的坐標(biāo)法定義以及誘導(dǎo)公式的運用;屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.如果隨機變量ξ~N(-1,σ2),且P(-2≤ξ≤-1)=0.3,則P(ξ≥0)=( 。
A.0.4B.0.3C.0.2D.0.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.為慶祝冬奧申辦成功,隨機調(diào)查了500名性別不同的大學(xué)生是否愛好某項冬季運動,提出假設(shè)H:“愛好這項運動與性別無關(guān)”,利用2×2列聯(lián)表計算的K2≈3.918,經(jīng)查臨界值表知P(K2≥3.841)≈0.05.則下列表述中正確的是(  )
A.有95%的把握認(rèn)為“愛好這項運動與性別有關(guān)”
B.有95%的把握認(rèn)為“愛好這項運動與性別無關(guān)”
C.在犯錯誤的概率不超過0.5%的前提下,認(rèn)為“愛好這項運動與性別有關(guān)”
D.在犯錯誤的概率不超過0.5%的前提下,認(rèn)為“愛好這項運動與性別無關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.執(zhí)行如圖所示的程序框圖,則輸出的i值為( 。
A.55B.6C.5D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.某幾何體的三視圖如圖,則該幾何體的體積為( 。
A.7$\frac{1}{6}$B.7$\frac{1}{3}$C.7$\frac{1}{2}$D.7$\frac{5}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.用反證法證明“△ABC的三邊長a,b,c的倒數(shù)成等差數(shù)列,求證B<$\frac{π}{2}$”假設(shè)正確的是( 。
A.角B是銳角B.角B不是銳角C.角B是直角D.角B是鈍角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.直線x+y+3=0的傾角是( 。
A.-$\frac{π}{4}$B.$\frac{π}{4}$C.$\frac{π}{2}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若函數(shù)f(x)=$\frac{xcosx}{(2x+1)(x-a)}$為奇函數(shù),則a=( 。
A.$\frac{3}{4}$B.$\frac{2}{3}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下面幾種推理中是演繹推理的是(  )
A.因為y=2x是指數(shù)函數(shù),所以函數(shù)y=2x經(jīng)過定點(0,1)
B.猜想數(shù)列$\frac{1}{1×2}$,$\frac{1}{2×3}$,$\frac{1}{3×4}$,…的通項公式為an=$\frac{1}{n(n+1)}$(n∈N*
C.由“平面內(nèi)垂直于同一直線的兩直線平行”類比推出“空間中垂直于同一平面的兩平面平行”
D.由平面直角坐標(biāo)系中圓的方程為(x-a)2+(y-b)2=r2,推測空間直角坐標(biāo)系中球的方程為(x-a)2+(y-b)2+(z-c)2=r2

查看答案和解析>>

同步練習(xí)冊答案