分析 由已知利用等差數(shù)列的性質(zhì)和等比數(shù)列通項公式得到4(2+2q)=2+3(2+2q+2q2),求出公比q,由此能求出Sn.
解答 解:∵等比數(shù)列{an}的前n項和為Sn,已知S1,2S2,3S3成等差數(shù)列,
∴4(2+2q)=2+3(2+2q+2q2),
解得q=$\frac{1}{3}$或q=0(舍),
∴Sn=$\frac{2(1-{2}^{n})}{1-2}$=2n+1-2.
故答案為:2n+1-2.
點評 本題考查數(shù)列的前n項和公式的求法,是基礎題,解題時要認真審題,注意等差數(shù)列的性質(zhì)和等比數(shù)列通項公式的合理運用.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | $\sqrt{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{{\sqrt{2}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ($1,\frac{5}{4}$] | B. | ($\frac{5}{4},\frac{3}{2}$] | C. | $(\frac{5}{4},\frac{13}{8})$ | D. | ($\frac{5}{4},\frac{3}{2}$) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | x=-$\frac{π}{2}$是函數(shù)f(x)的一條對稱軸 | |
B. | φ的所有取值中,絕對值最小的是$\frac{5π}{4}$ | |
C. | ($\frac{π}{2}$,0)是函數(shù)f(x)的一個對稱中心 | |
D. | 若f(x1)-f(x2)=4,則|x1-x2|的最小值為$\frac{2π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (1,0) | B. | ($\frac{3}{2}$,0) | C. | ($\frac{17}{5}$,0) | D. | (±$\frac{17}{5}$,0) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com