10.在單位圓中,大小為2弧度的圓心角所對弦的長度為2sin1.

分析 作圖,利用正弦函數(shù)的定義,找出圓心角,半徑,弦之間的關(guān)系即可得解.

解答  解:如圖,在單位圓O中,圓心角∠AOB=2,由點O向AB引垂線,設(shè)垂足為D,
則∠DOB=1,OB=1,BD=$\frac{1}{2}$AB=OBsin∠DOB=sin1,
可得:AB=2sin1.
故答案為:2sin1.

點評 本題考查了圓心角、弦、弧間的關(guān)系,考查了數(shù)形結(jié)合思想的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若x,y滿足約束條件$\left\{\begin{array}{l}{x-1≥0}\\{x-y≤0}\\{x+y-4≤0}\end{array}\right.$,則$\frac{y}{x-3}$的最小值為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在△ABC中,角A,B,C對應(yīng)的邊分別是a,b,c,已知3cosBcosC+2=3sinBsinC+2cos2A
(1)求角A的大小;
(2)已知$\frac{c}$+$\frac{c}$=4,求sinBsinC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知F1,F(xiàn)2為雙曲線$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}=1(a>0,b>0)$的左、右焦點,過點F2作此雙曲線一條漸近線的垂線,垂足為M,且滿足|$\overrightarrow{M{F}_{1}}$|=3|$\overrightarrow{M{F}_{2}}$|,則此雙曲線的離心率是( 。
A.$\sqrt{2}$B.$\frac{\sqrt{5}}{2}$C.$\sqrt{5}$D.$\frac{\sqrt{6}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知拋物線y2=2px(p>0)的焦點F與雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的右焦點重合,點M是拋物線與雙曲線的一個交點,若MF⊥x軸,則該雙曲線的離心率為$\sqrt{2}$+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.一條光線沿直線2x-y+2=0照射到y(tǒng)軸后反射,則反射光線所在的直線方程為( 。
A.2x+y-2=0B.2x+y+2=0C.x+2y+2=0D.x+2y-2=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.某自來水廠的蓄水池存有400噸水,水廠每小時可向蓄水池中注入60噸,同時蓄水池又向居民小區(qū)不間斷供水,t小時內(nèi)供水總量為$120\sqrt{6t}$噸(0≤t≤24)
(1)設(shè)t小時后蓄水池中的存水量為y噸,寫出y關(guān)于t的函數(shù)表達式;
(2)求從供水開始到第幾小時,蓄水池中的存水量最少?最少水量是多少噸?
(3)若蓄水池中水量少于80噸時,就會出現(xiàn)供水緊張現(xiàn)象,請問:在一天的24小時內(nèi),有幾小時出現(xiàn)供水緊張現(xiàn)象?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.對定義在區(qū)間D上的函數(shù)f(x)和g(x),如果對任意x∈D,都有|f(x)-g(x)|≤1成立,那么稱函數(shù)f(x)在區(qū)間D上可被g(x)替代,D稱為“替代區(qū)間”.給出以下命題:
①f(x)=x2+1在區(qū)間(-∞,+∞)上可被g(x)=x2+$\frac{1}{2}$替代;
②f(x)=x可被g(x)=1-$\frac{1}{4x}$替代的一個“替代區(qū)間”為[$\frac{1}{4}$,$\frac{3}{2}$]
③f(x)=lnx在區(qū)間[1,e]可被g(x)=$\frac{1}{x}$-b替代,則0≤b≤$\frac{1}{e}$
④f(x)=ln(ax2+x)(x∈D1),g(x)=sinx(x∈D2),則存在實數(shù)a(≠0),使得f(x)在區(qū)間D1∩D2上被g(x)替代.
其中真命題的有①②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.知點A,B分別為雙曲線E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的兩個頂點,點M在E上,△ABM為等腰三角形,且頂角為120°,則雙曲線E的離心率為( 。
A.$\sqrt{5}$B.2C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊答案