12.函數(shù)y=3tan(-2x+$\frac{π}{4}$)的單調(diào)區(qū)間為($\frac{kπ}{2}$-$\frac{π}{8}$,$\frac{kπ}{2}$+$\frac{3π}{8}$),k∈Z.

分析 根據(jù)復(fù)合函數(shù)單調(diào)性之間的關(guān)系結(jié)合正切函數(shù)的圖象和性質(zhì)進(jìn)行求解即可.

解答 解:y=3tan(-2x+$\frac{π}{4}$)=-3tan(2x-$\frac{π}{4}$),
由kπ-$\frac{π}{2}$<2x-$\frac{π}{4}$<kπ+$\frac{π}{2}$,k∈Z得
$\frac{kπ}{2}$-$\frac{π}{8}$<x<$\frac{kπ}{2}$+$\frac{3π}{8}$,k∈Z,
即函數(shù)的單調(diào)遞減間為($\frac{kπ}{2}$-$\frac{π}{8}$,$\frac{kπ}{2}$+$\frac{3π}{8}$),k∈Z,
故答案為:($\frac{kπ}{2}$-$\frac{π}{8}$,$\frac{kπ}{2}$+$\frac{3π}{8}$),k∈Z

點(diǎn)評(píng) 本題主要考查函數(shù)單調(diào)性和單調(diào)區(qū)間的求解,根據(jù)正切函數(shù)的性質(zhì)結(jié)合復(fù)合函數(shù)單調(diào)性之間的關(guān)系是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若$tanα=-\frac{1}{3}$,則$\frac{3sin(π-α)+2cos(-α)}{2sin(2π-α)-cos(π+α)}$=$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在等腰梯形ABCD中,已知AB∥CD,AB=4,BC=2,∠ABC=60°,動(dòng)點(diǎn)E和F分別在線段BC和DC上,且$\overrightarrow{BE}$=λ$\overrightarrow{BC}$,$\overrightarrow{DF}$=$\frac{1}{9λ}\overrightarrow{DC}$,當(dāng)λ=$\frac{2}{3}$時(shí),則$\overrightarrow{AE}$•$\overrightarrow{AF}$有最小值為$\frac{58}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知直線1的方程為x+(a-1)y+a2-1=0.
(1)若直線1不過第二象限,求實(shí)數(shù)a的取值范圍;
(2)若直線1將圓x2+y2-2mx-4y=0平分,當(dāng)m取得最大值時(shí),求圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=loga(x+1),g(x)=loga(1-x),其中(a>0且a≠1).
(1)求函數(shù)h(x)=f(x)-g(x)的定義域,并證明h(x)的奇偶性;
(2)根據(jù)復(fù)合函數(shù)單調(diào)性理論判斷g(x)的單調(diào)性,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知a>1,函數(shù)f(x)=loga(x+1),g(x)=2loga(2x+t),當(dāng)x∈(-1,1),t∈[4,6]時(shí),存在g(x)≤f(x)+4成立,則a的最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知點(diǎn)A(-1,2),B(1,3),在直線y=2x上求一點(diǎn)P,使|PA|2+|PB|2取得最小值,并寫出P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.作出函數(shù)y=|sin(x+$\frac{3π}{2}$)|在[-2π,2π]上的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.經(jīng)過一條直線與這條直線外的-點(diǎn),可以確定一個(gè)個(gè)平而.

查看答案和解析>>

同步練習(xí)冊(cè)答案