15.若變量x,y滿足約束條件$\left\{\begin{array}{l}x+2y≤2\\ x+y≥0\\ x≤4\end{array}\right.$,則z=2x+3y的最大值為5.

分析 作出可行域,變形目標(biāo)函數(shù),平移直線y=-$\frac{2}{3}$x數(shù)形結(jié)合可得結(jié)論.

解答 解:作出約束條件$\left\{\begin{array}{l}x+2y≤2\\ x+y≥0\\ x≤4\end{array}\right.$所對(duì)應(yīng)的可行域(如圖陰影),
變形目標(biāo)函數(shù)可得y=-$\frac{2}{3}$x+$\frac{1}{3}$z,平移直線y=-$\frac{2}{3}$x可知,
當(dāng)直線經(jīng)過(guò)點(diǎn)A(4,-1)時(shí),目標(biāo)函數(shù)取最大值,
代值計(jì)算可得z的最大值為:2×4-3=5,
故答案為:5.

點(diǎn)評(píng) 本題考查簡(jiǎn)單線性規(guī)劃,準(zhǔn)確作圖是解決問(wèn)題的關(guān)鍵,屬中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知圓C的方程為x2+(y-4)2=4,點(diǎn)O是坐標(biāo)原點(diǎn),直線l:y=kx與圓C交于M,N兩點(diǎn).
(1)求k的取值范圍;
(2)求弦MN中點(diǎn)G的軌跡方程,并求出軌跡的長(zhǎng)度;
(3)設(shè)Q(m,n)是線段MN上的點(diǎn),且$\frac{2}{{|OQ{|^2}}}=\frac{1}{{|OM{|^2}}}+\frac{1}{{|ON{|^2}}}$,請(qǐng)將n表示為m的函數(shù),并求其定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知A={α|sinα≤$\frac{\sqrt{2}}{2}$,α∈[0,2π)},B={β|cosβ≤$\frac{\sqrt{2}}{2}$,β∈[0,2π)},則A∩B=$\{\frac{π}{4}\}$∪$[\frac{3π}{4},\frac{7π}{4}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知O為△ABC的外心,$AB=2AC=2,\overrightarrow{AB}•\overrightarrow{AC}=-1$,若$\overrightarrow{AO}={x_1}\overrightarrow{AB}+{x_2}\overrightarrow{AC}$,則x1+x2的值為( 。
A.1B.$\frac{11}{6}$C.2D.$\frac{13}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.設(shè)函數(shù)f(x)=x2-log2(2x+2).若0<b<1,則f(b)的值滿足(  )
A.f(b)>f(-$\frac{3}{4}$)B.f(b)>0C.f(b)>f(2)D.f(b)<f(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.求下列復(fù)數(shù)的模和輻角(模保留根號(hào);輻角為特殊角的保留π,輻角為非特殊角的用弧度制表示,并保留4位有效數(shù)字):
(1)-$\sqrt{3}$;
(2)4+2i;
(3)-2+5i;
(4)-4-3i;
(5)$\frac{1}{2}-\frac{\sqrt{3}}{2}$i;
(6)2+3i;
(7)-3+$\frac{1}{2}$i;
(9)2-3i;
(10)-3$-\frac{1}{2}$i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知圓x2+y2=4,圓內(nèi)定點(diǎn)P(1,0),過(guò)P作兩條互相垂直的弦AC和BD,設(shè)AC的傾斜角為可α(0$≤α<\frac{π}{2}$).
(1)求四邊形ABCD的面積S;
(2)當(dāng)S取最大值時(shí),求α及最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.等差數(shù)列a1,a2,…,am的和為-64,而且am-1+a2=-8,那么其項(xiàng)數(shù)m=16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.函數(shù)y=$\sqrt{3x+6}$的定義域用區(qū)間表示為(  )
A.(-∞,+∞)B.(0,+∞)C.(-2,+∞)D.[-2,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案