【題目】已知橢圓E:的焦點(diǎn)在x軸上,拋物線C:與橢圓E交于A,B兩點(diǎn),直線AB過拋物線的焦點(diǎn).
(1)求橢圓E的方程和離心率e的值;
(2)已知過點(diǎn)H(2,0)的直線l與拋物線C交于M、N兩點(diǎn),又過M、N作拋物線C的切線l1,l2,使得l1⊥l2,問這樣的直線l是否存在?若存在,求出直線l的方程;若不存在,說(shuō)明理由.
【答案】(1);(2)
【解析】
(1)利用拋物線的方程求出點(diǎn)的坐標(biāo),代入橢圓的方程,即可求得的值,進(jìn)而得到離心率的值;
(2)設(shè)直線 的方程為,由拋物線的方程得,則,所以切線的斜率分別為,,有題設(shè)條件得,再由直線的方程和拋物線的方程聯(lián)立,利用韋達(dá)定理,得,即可求得,得到直線的方程.
(1)∵x2=2py,∴,∴代入得
∴代點(diǎn)A到得t=4.
∴橢圓E:,a=2,b=1,∴,∴離心率.
(2)依題意,直線l的斜率必存在,
設(shè)直線l的方程為y=k(x-2),M(x1,y1),N(x2,y2).
因?yàn)?/span>所以
所以切線l1,l2的斜率分別為,.
當(dāng)l1⊥l2時(shí),,即x1x2=-2.
由得,
所以,解得.
又恒成立,
所以存在直線l的方程是,即
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從1至9這9個(gè)自然數(shù)中任取兩個(gè):
恰有一個(gè)偶數(shù)和恰有一個(gè)奇數(shù);至少有一個(gè)是奇數(shù)和兩個(gè)數(shù)都是奇數(shù);
至多有一個(gè)奇數(shù)和兩個(gè)數(shù)都是奇數(shù);至少有一個(gè)奇數(shù)和至少有一個(gè)偶數(shù).
在上述事件中,是對(duì)立事件的是
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在直角坐標(biāo)系中, 直線的參數(shù)方程為是為參數(shù)), 以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系, 曲線的極坐標(biāo)方程為.
(1) 判斷直線與曲線的位置關(guān)系;
(2) 在曲線上求一點(diǎn),使得它到直線的距離最大,并求出最大距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)口袋中裝有個(gè)紅球且和個(gè)白球,一次摸獎(jiǎng)從中摸兩個(gè)球,兩個(gè)球顏色不同則為中獎(jiǎng).
(1)用表示一次摸獎(jiǎng)中獎(jiǎng)的概率;
(2)若,設(shè)三次摸獎(jiǎng)(每次摸獎(jiǎng)后球放回)恰好有次中獎(jiǎng),求的數(shù)學(xué)期望;
(3)設(shè)三次摸獎(jiǎng)(每次摸獎(jiǎng)后球放回)恰好有一次中獎(jiǎng)的概率,當(dāng)取何值時(shí), 最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ex﹣1,g(x)=﹣x2+4x﹣3,若存在f(a)=g(b),則實(shí)數(shù)b的取值范圍為( )
A.[1,3]
B.(1,3)
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將函數(shù) 的圖象向右平移 個(gè)單位長(zhǎng)度后,所得圖象的一條對(duì)稱軸方程可以是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某地區(qū)觀眾對(duì)大型綜藝活動(dòng)《中國(guó)好聲音》的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查,其中女性有55名.下面是根據(jù)調(diào)查結(jié)果繪制的觀眾收看該節(jié)目的場(chǎng)數(shù)與所對(duì)應(yīng)的人數(shù)表:
場(chǎng)數(shù) | 9 | 10 | 11 | 12 | 13 | 14 |
人數(shù) | 10 | 18 | 22 | 25 | 20 | 5 |
將收看該節(jié)目場(chǎng)次不低于13場(chǎng)的觀眾稱為“歌迷”,已知“歌迷”中有10名女性.
(1)根據(jù)已知條件完成下面的2×2列聯(lián)表,并據(jù)此資料我們能否有95%的把握認(rèn)為“歌迷”與性別有關(guān)?
非歌迷 | 歌迷 | 合計(jì) | |
男 | |||
女 | |||
合計(jì) |
(2)將收看該節(jié)目所有場(chǎng)次(14場(chǎng))的觀眾稱為“超級(jí)歌迷”,已知“超級(jí)歌迷”中有2名女性,若從“超級(jí)歌迷”中任意選取2人,求至少有1名女性觀眾的概率.
P(K2≥k) | 0.05 | 0.01 |
k | 3.841 | 6.635 |
附:K2=.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分14分)
設(shè)函數(shù),其中.
( I )若函數(shù)圖象恒過定點(diǎn)P,且點(diǎn)P在的圖象上,求m的值;
(Ⅱ)當(dāng)時(shí),設(shè),討論的單調(diào)性;
(Ⅲ)在(I)的條件下,設(shè),曲線上是否存在兩點(diǎn)P、Q,
使△OPQ(O為原點(diǎn))是以O為直角頂點(diǎn)的直角三角形,且該三角形斜邊的中點(diǎn)在y軸上?如果存在,求a的取值范圍;如果不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)列{an}是以d(d≠0)為公差的等差數(shù)列,a1=2,且a2 , a4 , a8成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若bn=an2n(n∈N*),求數(shù)列{bn}的前n項(xiàng)和Tn .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com