【題目】已知函數(shù),的導(dǎo)函數(shù).證明:

1在區(qū)間存在唯一極小值點(diǎn);

2有且僅有個(gè)零點(diǎn).

【答案】1)證明見解析;(2)證明見解析

【解析】

1)令,然后得到,得到的單調(diào)性和極值,從而證明在區(qū)間存在唯一極小值點(diǎn);

(2)根據(jù)的正負(fù),得到的單調(diào)性,結(jié)合,,的值,得到的圖像,從而得到的單調(diào)性,結(jié)合的值,從而判斷出有且僅有個(gè)零點(diǎn).

1)令,

,

當(dāng)時(shí),恒成立,

當(dāng)時(shí),.

遞增,,.

故存在使得,時(shí)時(shí),.

綜上,在區(qū)間存在唯一極小值點(diǎn).

2)由(1)可得

時(shí),,單調(diào)遞減,

時(shí),,單調(diào)遞增.

.

的大致圖象如下:

當(dāng)時(shí),,

∴此時(shí)單調(diào)遞增,而.

故存在,使得

故在上,的圖象如下:

綜上,時(shí),,時(shí),時(shí),.

遞增,在遞減,在遞增,

,,

又當(dāng)時(shí),,恒成立.

故在的圖象如下:

有且僅有個(gè)零點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】年以來精準(zhǔn)扶貧政策的落實(shí),使我國(guó)扶貧工作有了新進(jìn)展,貧困發(fā)生率由年底的下降到年底的,創(chuàng)造了人類減貧史上的的中國(guó)奇跡.“貧困發(fā)生率”是指低于貧困線的人口占全體人口的比例,年至年我國(guó)貧困發(fā)生率的數(shù)據(jù)如下表:

年份

2012

2013

2014

2015

2016

2017

2018

貧困發(fā)生率

10.2

8.5

7.2

5.7

4.5

3.1

1.4

(1)從表中所給的個(gè)貧困發(fā)生率數(shù)據(jù)中任選兩個(gè),求兩個(gè)都低于的概率;

(2)設(shè)年份代碼,利用線性回歸方程,分析span>年至年貧困發(fā)生率與年份代碼的相關(guān)情況,并預(yù)測(cè)年貧困發(fā)生率.

附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:

(的值保留到小數(shù)點(diǎn)后三位)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,以為極點(diǎn),軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,直線的參數(shù)方程為為參數(shù),直線與曲線分別交于兩點(diǎn).

(1)若點(diǎn)的極坐標(biāo)為,求的值;

(2)求曲線的內(nèi)接矩形周長(zhǎng)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在五面體中,側(cè)面是正方形,是等腰直角三角形,點(diǎn)是正方形對(duì)角線的交點(diǎn),.

(1)證明:平面;

(2)若側(cè)面與底面垂直,求五面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn,等比數(shù)列{bn}的前n項(xiàng)和為Tn,a11b1=﹣1,a2-b22.

1)若a3-b36,求{bn}的通項(xiàng)公式

2)若T3=﹣13,求S5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)正四面體ABCD的所有棱長(zhǎng)都為1米,有一只螞蟻從點(diǎn)A開始按以下規(guī)則前進(jìn):在每一個(gè)頂點(diǎn)處等可能地選擇通過這個(gè)頂點(diǎn)的三條棱之一,并且沿著這條棱爬到盡頭,則它爬了4米之后恰好位于頂點(diǎn)A的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱錐底面是菱形,平面,分別是的中點(diǎn).

(1)求證:平面平面;

(2),垂足為,斜線與平面所成的角為,求二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,橢圓的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為,直線經(jīng)過橢圓的右焦點(diǎn)

1)求實(shí)數(shù)的值;

2)設(shè)直線與橢圓相交于兩點(diǎn),求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案