17.已知函數(shù)f(x)=|log4x|-($\frac{1}{2}$)x的零點(diǎn)分別為x1,x2,則( 。
A.0<x1x2<$\frac{1}{4}$B.$\frac{1}{4}$<x1x2<$\frac{1}{2}$C.$\frac{1}{2}$<x1x2<1D.x1x2>1

分析 已知f(x)=|log4x|-($\frac{1}{2}$)x可以令g(x)=|log4x|,h(x)=($\frac{1}{2}$)x,畫出g(x)與h(x)的圖象利用數(shù)形結(jié)合法得到兩個(gè)根的范圍,進(jìn)行求解.

解答 解:函數(shù)f(x)=|log4x|-($\frac{1}{2}$)x的零點(diǎn)問題可以轉(zhuǎn)化為函數(shù)h(x)=|log4x|與函數(shù)g(x)=($\frac{1}{2}$)x的圖象交點(diǎn)問題.
畫出兩個(gè)函數(shù)的圖象可知,

其中一個(gè)交點(diǎn)的橫坐標(biāo)$\frac{1}{2}$<x1<1,另一個(gè)交點(diǎn)的橫坐標(biāo)1<x2<2,
∴$\frac{1}{2}$<x1x2<1,
故選:C.

點(diǎn)評(píng) 本題主要考查指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的性質(zhì)及其應(yīng)用,解題的過程中用了分類討論的思想,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知f(x)=$\left\{\begin{array}{l}{2cosπx,x≤0}\\{f(x-1)+1,x>0}\end{array}\right.$,則f($\frac{4}{3}$)的值為( 。
A.-1B.1C.$\frac{3}{2}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知正實(shí)數(shù)x,y滿足等式$\frac{1}{x}$+$\frac{3}{y}$=2.
(1)求xy的最小值;
(2)若3x+y≥m2-m恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知集合A={x|x2+4x-12<0},B={x|x>log${\;}_{\frac{1}{3}}$9},則A∩B等于( 。
A.(-$\frac{1}{3}$,2)B.(-2,3)C.(-2,2)D.(-6,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知命題p:?x∈(0,+∞),x≥lnx+1,命題q:?x∈[0,+∞),sinx>x,則下列結(jié)論正確的是( 。
A.p∧q是真命題B.¬p∨q是真命題C.¬q是假命題D.p∧¬q是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.從數(shù)字1,2,3,4,5中任取2個(gè),組成一個(gè)沒有重復(fù)數(shù)字的兩位數(shù),則這個(gè)兩位數(shù)大于30的概率是( 。
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)集合A={x|0≤x≤6},集合B={x|3x2+2x-8≤0},則A∪B=(  )
A.[0,$\frac{4}{3}$]B.[-2,$\frac{4}{3}$]C.[0,6]D.[-2,6]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,已知a-b=1,c=2,sinA=2sinB.
(1)求△ABC的面積;
(2)求sin(2A-B).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知A,B,C,D,E五位同學(xué)的身高依次降低,現(xiàn)在他們排成一排照相,要求最高的A同學(xué)在最中間.
(1)共有多少種排法?
(2)若要求左邊第一個(gè)同學(xué)比左邊第二個(gè)同學(xué)矮,最右邊第一個(gè)同學(xué)也比右邊第二個(gè)同學(xué)矮,則共有多少種排法?

查看答案和解析>>

同步練習(xí)冊(cè)答案