A. | -1 | B. | 1 | C. | $\frac{3}{2}$ | D. | $\frac{5}{2}$ |
分析 首先運用分段函數(shù)的第二段,可得f($\frac{4}{3}$)=f(-$\frac{2}{3}$)+2,再由第一段求得f(-$\frac{2}{3}$)=2cos(-$\frac{2π}{3}$)=-1,即可得到所求值.
解答 解:f(x)=$\left\{\begin{array}{l}{2cosπx,x≤0}\\{f(x-1)+1,x>0}\end{array}\right.$,
即有f($\frac{4}{3}$)=f($\frac{1}{3}$)+1=f(-$\frac{2}{3}$)+2,
由f(-$\frac{2}{3}$)=2cos(-$\frac{2π}{3}$)=2×(-$\frac{1}{2}$)=-1,
可得f($\frac{4}{3}$)=-1+2=1.
故選:B.
點評 本題考查分段函數(shù)的運用:求函數(shù)值,注意運用分段函數(shù)的每一段,考查運算能力,屬于基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\left\{\begin{array}{l}{x-y≥0}\\{x+y≥0}\\{0≤x≤3}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x-y≥0}\\{x+y≤0}\\{0≤x≤3}\end{array}\right.$ | ||
C. | $\left\{\begin{array}{l}{x-y≤0}\\{x+y≤0}\\{0≤x≤3}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x-y≤0}\\{x+y≥0}\\{0≤x≤3}\end{array}\right.$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 極大值為f(2)=5,極小值為f(3)=1,f(-1)=-3 | |
B. | 極大值為f(2)=5,極小值為f(3)=f(0)=1 | |
C. | 極大值為f(2)=5,極小值為f(3)=1 | |
D. | 極大值為f(2)=5,極小值為f(0)=1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1023 | B. | 1024 | C. | 1025 | D. | 1026 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0<x1x2<$\frac{1}{4}$ | B. | $\frac{1}{4}$<x1x2<$\frac{1}{2}$ | C. | $\frac{1}{2}$<x1x2<1 | D. | x1x2>1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com