7.已知A,B,C,D,E五位同學的身高依次降低,現(xiàn)在他們排成一排照相,要求最高的A同學在最中間.
(1)共有多少種排法?
(2)若要求左邊第一個同學比左邊第二個同學矮,最右邊第一個同學也比右邊第二個同學矮,則共有多少種排法?

分析 (1)最高的A同學在最中間,其它4個同學任意排,問題得以解決;
(2)任選2名同學,則這2名的身高順序確定,剩下的2名的同學的身高順序確定,問題得以解決.

解答 解:(1)最高的A同學在最中間,其它4個同學任意排,故有A44=24種,
(2)任選2名同學,則這2名的身高順序確定,剩下的2名的同學的身高順序確定,故有C42=6種.

點評 本題考查了定序法進行排列組合,關鍵是掌握順序,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

17.已知函數(shù)f(x)=|log4x|-($\frac{1}{2}$)x的零點分別為x1,x2,則( 。
A.0<x1x2<$\frac{1}{4}$B.$\frac{1}{4}$<x1x2<$\frac{1}{2}$C.$\frac{1}{2}$<x1x2<1D.x1x2>1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知函數(shù)f(x)=$\left\{\begin{array}{l}{ln(1-x),x<0}\\{(x-1)^{3}+1,x≥0}\end{array}\right.$,若存在x0,使得f(x0)<ax0成立,則實數(shù)a的取值范圍是(-∞,0)∪($\frac{3}{4}$,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)是定義在R上的奇函數(shù),當x≤0時,f(x)=$\frac{2x}{x-1}$
(1)求f(x)的解析式;
(2)求f(x)在區(qū)間[2,6]上的最大值和最小值;
(3)解不等式f[lgx+1g(x-3)]>f(1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.若$\frac{1}{6}$${A}_{n+1}^{3}$=${C}_{n+1}^{2}$,則n=4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.在等差數(shù)列{an}中,a6=5,a3+a8=5,a9=20.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.在等差數(shù)列{an}中,a3+a5=13,則a1+a2+…+a7=$\frac{91}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.數(shù)列{an}中a1=1,2Sn=an+1,求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.對于實數(shù)a,b,c,下列結論中正確的是(  )
A.若a>b,則ac2>bc2B.若a>b>0,則$\frac{1}{a}$>$\frac{1}$
C.若a<b<0,則$\frac{a}$<$\frac{a}$D.若a>b,$\frac{1}{a}$>$\frac{1}$,則ab<0

查看答案和解析>>

同步練習冊答案