分析 設橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1的右焦點為E,由已知推導出PE=8,PF=2,EF=8,利用余弦定理求出cos∠PFE,由此能求出直線PF的斜率.
解答 解:如圖,設橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1的右焦點為E
∵P是橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1上位于x軸上方的一點,F(xiàn)是橢圓的左焦點,O為原點,Q為PF的中點,且|OQ|=4,
∴OQ是△PEF的中位線,∴PE=2OQ=8,
∴PF=2a-8=2×5=8=2,EF=2c=8,
∴cos∠PFE=$\frac{P{F}^{2}+E{F}^{2}-P{E}^{2}}{2PF•EF}$=$\frac{4+64-64}{2×2×8}$=$\frac{1}{8}$,
∴sin∠PFE=$\sqrt{1-\frac{1}{64}}$=$\frac{\sqrt{63}}{8}$,∴tan∠PFE=$\sqrt{63}$.
∴直線PF的斜率為$\sqrt{63}$.
故答案為:$\sqrt{63}$.
點評 本題考查直線的斜率的求法,是中檔題,解題時要認真審題,注意橢圓性質(zhì)的合理運用.
科目:高中數(shù)學 來源: 題型:選擇題
A. | α=$\frac{π}{3}$,β=-$\frac{π}{3}$ | B. | α=$\frac{π}{3}$,β=$\frac{2π}{3}$ | C. | α=$\frac{π}{5}$,β=-$\frac{7π}{10}$ | D. | α=$\frac{π}{3}$,β=-$\frac{π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com