14.在一項吃零食與性別的調(diào)查中,運用2×2列聯(lián)表進行獨立性檢驗得到K2≈2.521,那么判斷吃零食和性別有關(guān)的這種判斷的出錯率為(  )
A.1%B.99%C.15%D.90%

分析 把列聯(lián)表中的數(shù)據(jù)代入求觀測值的公式,求出這組數(shù)據(jù)的觀測值,把觀測值同臨界值進行比較,得到有85%的把握認為“性別與喜歡數(shù)學(xué)有關(guān)系”.即可得到結(jié)論.

解答 解:∵K2≈2.521>2,072,
∴P(K2>2,072)=15%,
即有85%的把握認為吃零食和性別有關(guān),
即判斷吃零食和性別有關(guān)的這種判斷的出錯率為15%.
故選:C.

點評 本題考查獨立性檢驗的應(yīng)用,本題解題的關(guān)鍵是正確讀圖和作圖,正確理解臨界值對應(yīng)的概率的意義,本題是一個基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.用符號(x]表示不小于x的最小整數(shù),如(π]=4,(-1.2]=-1.則方程(x]-x=$\frac{1}{2}$在(1,4)上實數(shù)解的個數(shù)為(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.棱長為2的正方體被一平面截得的幾何體的三視圖如圖所示,那么被截去的幾何體的體積是( 。
A.$\frac{14}{3}$B.$\frac{10}{3}$C.4D.$\frac{16}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知四棱錐S-ABCD的所有頂點都在半徑為2的球O的球面上,四邊形ABCD是邊長為2的正方形,SC為球O的直徑,則此棱錐的體積為( 。
A.$\frac{4\sqrt{2}}{3}$B.$\frac{\sqrt{3}}{6}$C.$\frac{8\sqrt{2}}{3}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知定義在區(qū)間[0,+∞)上的函數(shù)y=f(x)滿足下列三個條件:
①對任意的x>0,y>0,總有f[x•f(y)]•f(y)=f(x+y)成立;
②f(2)=0;
③當0<x<2時,總有f(x)≠0.
則f(3)+f($\frac{1}{2}$)的值為$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知等差數(shù)列{an}的公差d=4,若am+1+am+2+am+3+…+a2m=10,a2m+1+a2m+2+…+a3m=154,則m=( 。
A.3B.6C.8D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)=[x[x]](n<x<x+1,n∈N*),其中[x]表示不超過x的最大整數(shù),如[-2.1]=-3,[-3]=-3,[2.5]=2.定義an是函數(shù)f(x)的值域中的元素個數(shù),數(shù)列{an}的前n項和為Sn,若$\sum_{i=1}^{n}$$\frac{1}{{S}_{i}}$<$\frac{m}{10}$,對n∈N*均成立,則最小正整數(shù)m的值為( 。
A.18B.19C.20D.21

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.橢圓$\frac{x^2}{9}$+$\frac{y^2}{5}$=1的右焦點為F,右準線為l,橢圓右頂點B到l的距離為d,則$\frac{BF}wfbypxt$的值為$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的一個焦點和拋物線y2=4$\sqrt{6}$x的焦點相同,過橢圓右焦點F且垂直x軸的弦長為2.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若與直線l1:x-2y+t=0相垂直的直線l與橢圓C交于B、D兩點,求△OBD的最大值.

查看答案和解析>>

同步練習(xí)冊答案