A. | $\frac{4\sqrt{2}}{3}$ | B. | $\frac{\sqrt{3}}{6}$ | C. | $\frac{8\sqrt{2}}{3}$ | D. | $\frac{\sqrt{2}}{2}$ |
分析 根據(jù)題意得出空間幾何體的直觀圖,利用圓的幾何知識(shí)得出Rt△SBC,Rt△SDC,Rt△SAC,利用邊長(zhǎng)根據(jù)勾股定理得出△ABS,△ADS,為直角三角形,可得SA⊥平面ABC,即可求棱錐的體積.
解答 解:根據(jù)題意得出:
AC=2$\sqrt{2}$,SC=4,AB=BC=DC=DA=2
根據(jù)圓的幾何知識(shí)得出Rt△SBC,Rt△SDC,Rt△SAC,
∴可知SD=SB=2$\sqrt{3}$,SA=2$\sqrt{2}$,
根據(jù)勾股定理得出△ABS,△ADS,為直角三角形.
∴SA⊥AC,SA⊥AB,
∵AC∩AB=A,
∴SA⊥平面ABC,
∴棱錐的體積為$\frac{1}{3}×2×2×2\sqrt{2}$=$\frac{8\sqrt{2}}{3}$,
故選:C.
點(diǎn)評(píng) 本題考查了球的內(nèi)接幾何體的問(wèn)題,充分利用圓的知識(shí)得出直線,平面的位置關(guān)系,從而利用公式求解即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{3}{4}$ | B. | $\frac{2}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(sinα)>f(cosβ) | B. | f(sinα)>f(sinβ) | C. | f(sinα)<f(cosβ) | D. | f(cosα)>f(cosβ) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{4}{3}$ | B. | 4 | C. | -4 | D. | -8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1% | B. | 99% | C. | 15% | D. | 90% |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{4}{3}$ | B. | 4 | C. | 8 | D. | 2$\sqrt{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com