1.與兩條平行直線l1:2x-3y+4=0和l2:2x-3y-2=0距離相等的直線l的方程為2x-3y+1=0.

分析 設(shè)直線l:2x-3y+m=0,-2<m<4,利用兩平行線間的距離公式,求得m的值.

解答 解:根據(jù)直線l與兩直線l1:2x-3y+4=0和l2:2x-3y-2=0平行且距離相等,可設(shè)直線l:2x-3y+m=0,-2<m<4,
∵$\frac{|m-4|}{\sqrt{4+9}}$=$\frac{|m+2|}{\sqrt{4+9}}$,∴m=1,
∴直線l的方程為2x-3y+1=0.
故答案為:2x-3y+1=0.

點(diǎn)評(píng) 本題主要考查兩平行線間的距離公式的應(yīng)用,要注意先把兩直線的方程中x,y的系數(shù)化為相同的,然后才能用兩平行線間的距離公式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若a,b∈R+且ab2=4,則a+3b的最小值為( 。
A.3$\root{3}{7}$B.6C.3$\root{3}{9}$D.3$\root{3}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)x>0,求證:x2+$\frac{2}{x}$≥3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若f(x+2)=$\left\{\begin{array}{l}{tanx,x≥0}\\{lo{g}_{2}(-x),x<0}\end{array}\right.$,則f($\frac{π}{4}$+2)•f(-2)=(  )
A.-1B.1C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.用求商比較法證明:當(dāng)a>2,b>2時(shí),a+b<ab.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知:x∈(0,$\frac{1}{2}$),則$\frac{2}{x}$+$\frac{9}{1-2x}$的最小值為25.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)集合A={x|x2-3x+2=0},B={x|2x2-ax+2=0},若A∪B=A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.某地地震,為了安置廣大災(zāi)民,抗震救災(zāi)指揮部決定建造一批簡(jiǎn)易房(每套長(zhǎng)方體狀,房高2.5米),前后墻用2.5米高的彩色鋼板,兩側(cè)用2.5米高的復(fù)合鋼板,兩種鋼板的價(jià)格都用長(zhǎng)度來計(jì)算(即:鋼板的高均為2.5米,用鋼板的長(zhǎng)度乘以單價(jià)就是這塊鋼板的價(jià)格),每米單價(jià):彩色鋼板為450元,復(fù)合鋼板為200元.房頂用其它材料建造,每平方米材料費(fèi)為200元.每套房建筑面積100平方米,試計(jì)算:
(1)設(shè)房前面墻的長(zhǎng)為x,兩側(cè)墻的長(zhǎng)為y,所用材料費(fèi)為p,試用x,y表示p;
(2)求簡(jiǎn)易房造價(jià)S的最小值是多少?并求S最小時(shí),前面墻的長(zhǎng)度應(yīng)設(shè)計(jì)為多少米?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,A、B是海岸線OM、ON上的兩個(gè)碼頭,海中小島有碼頭Q到海岸線OM、ON的距離分別為2km、$\frac{7\sqrt{10}}{5}$km.測(cè)得tan∠MON=-3,OA=6km.以點(diǎn)O為坐標(biāo)原點(diǎn),射線OM為x軸的正半軸,建立如圖所示的直角坐標(biāo)系.一艘游輪以18$\sqrt{2}$km/小時(shí)的平均速度在水上旅游線AB航行(將航線AB看作直線,碼頭Q在第一象限,航線AB經(jīng)過Q).
(1)問游輪自碼頭A沿$\overrightarrow{AB}$方向開往碼頭B共需多少分鐘?
(2)海中有一處景點(diǎn)P(設(shè)點(diǎn)P在xOy平面內(nèi),PQ⊥OM,且PQ=6km),游輪無法靠近.求游輪在水上旅游線AB航行時(shí)離景點(diǎn)P最近的點(diǎn)C的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案