8.△ABC中內(nèi)角A,B,C的對邊分別為a,b,c,若a,b,c成等比數(shù)列,且a2-c2=ac-bc,則角A的大小及$\frac{bsinB}{c}$的值分別為( 。
A.$\frac{π}{6}$,$\frac{1}{2}$B.$\frac{π}{3}$,$\frac{{\sqrt{3}}}{2}$C.$\frac{π}{3}$,$\frac{1}{2}$D.$\frac{π}{6}$,$\frac{{\sqrt{3}}}{2}$

分析 a,b,c成等比數(shù)列,可得b2=ac.已知a2-c2=ac-bc,可得b2+c2-a2=bc,利用余弦定理可得A,再利用正弦定理即可得出$\frac{bsinB}{c}$的值.

解答 解:a,b,c成等比數(shù)列,∴b2=ac.
∵a2-c2=ac-bc,∴a2-c2=b2-bc,即b2+c2-a2=bc,
∴cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{1}{2}$,
∵A∈(0,π),∴A=$\frac{π}{3}$.
由正弦定理:$\frac{a}{sinA}=\frac{sinB}$,∴sinB=$\frac{bsinA}{a}$,
∴$\frac{bsinB}{c}$=$\frac{^{2}sinA}{ac}$=sinA=$\frac{\sqrt{3}}{2}$.
故選:B.

點評 本題考查了正弦定理余弦定理、等比數(shù)列的性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.求下列函數(shù)的極值:y=x4-8x2+2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)f(x)是定義在R上的奇函數(shù),當(dāng)x>0時,f′(x)sinx+f(x)cosx>0且f($\frac{π}{2}$)=1,則f(x)sinx≤1的整數(shù)解的集合為{-1,0,1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=x3-tx2+3x在區(qū)間[1,3]上單調(diào)遞減,則實數(shù)t的取值范圍是( 。
A.(-∞,3]B.(-∞,5]C.[3,+∞)D.[5,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.(1)用分析法證明不等式:$\sqrt{6}$+$\sqrt{5}$>$\sqrt{7}$+2;
(2)用綜合法證明不等式:若a+b+c=1,則ab+bc+ac≤$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.復(fù)數(shù)-1+$\frac{1}{i}$在復(fù)平面上對應(yīng)的點的坐標(biāo)是( 。
A.(1,1)B.(1,-1)C.(-1,1)D.(-1,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.當(dāng)x>0時,求f(x)=$\frac{12}{x}$+3x的最小值為12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知tanα=2,求
(1)tan(α+$\frac{π}{4}$)的值       
(2)$\frac{6sinα+cosα}{3sinα-cosα}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.如果三點A(1,5,-2),B(3,4,1),C(a,3,b+2)在同一直線上,則a+b=7.

查看答案和解析>>

同步練習(xí)冊答案