已知g(x)=1-2x,f(g(x))=
x2-1
x2+1
,則f(10)等于(  )
A、
79
83
B、
99
101
C、
77
85
D、
180
221
考點(diǎn):函數(shù)的值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:直接利用已知條件轉(zhuǎn)化10=1-2×(-
9
2
)
,然后求解即可.
解答: 解:g(x)=1-2x,f(g(x))=
x2-1
x2+1
,
所以f(1-2x)=
x2-1
x2+1
,
f(10)=f(1-2×(-
9
2
)
)=
(-
9
2
)2-1
(-
9
2
)2+1
=
77
85

故選:C.
點(diǎn)評:本題考查函數(shù)值的求法,函數(shù)的解析式的應(yīng)用,基本知識的考查.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log2x-1,對于滿足0<x1<x2的任意實(shí)數(shù)x1、x2,給出下列結(jié)論:
①[f(x2)-f(x1)](x1-x2)<0;
②x2f(x1)>x1f(x2);
③f(x2)-f(x1)>x2-x1;
f(x1)+f(x2)
2
<f(
x1+x2
2
).
其中正確結(jié)論的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若定義運(yùn)算a?b=
b(a≥b)
a(a<b)
,則函數(shù)f(x)=3x?3-x的值域是( 。
A、[1,+∞)
B、(0,1]
C、(0,+∞)
D、(-∞,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),f′(x)沒有零點(diǎn)且圖象是連續(xù)不斷的曲線,又f(x-2012)的圖象關(guān)于點(diǎn)(2012,0)對稱.若函數(shù)定義域內(nèi)的三個(gè)值a、b、c足(a+b)(b+c)>0,(a+b)(c+a)>0,則f(a)+f(b)+f(c)的值( 。
A、大于零B、小于零
C、等于零D、正負(fù)都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

奇函數(shù)f(x)定義在R上,對常數(shù)T>0,恒有方程f(x+T)=f(x)則在區(qū)間[0,2T],方程f(x)=0根的個(gè)數(shù)最小值是( 。
A、3個(gè)B、4個(gè)C、5個(gè)D、6個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)在(0,+∞)上是增函數(shù)的是( 。
A、y=
1
x
B、y=|x|
C、y=-x2
D、y=-2x+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)=x3+ax2+x+2在定義域內(nèi)不存在極值,則a的取值范圍為( 。
A、(-∞,-
3
]∪[
3
,+∞)
B、[-
3
,
3
]
C、(-∞,-
3
)∪(
3
,+∞)
D、(-
3
,
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}中,a2•a8=4a5,等差數(shù)列{bn}中,b4+b6=a5,則數(shù)列{bn}的前9項(xiàng)和S9等于( 。
A、9B、18C、36D、72

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|(x-2)[x-(3a+1)]<0},B={x|
x-2a
x-(a2+1)
≤0}.
(1)當(dāng)a=2時(shí),求A∩B;
(2)求使B⊆A的實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案