11.已知實(shí)數(shù)1,t,4成等比數(shù)列,則圓錐曲線$\frac{x^2}{t}+{y^2}$=1的離心率為(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{2}}}{2}$或$\sqrt{3}$C.$\frac{1}{2}$或$\sqrt{3}$D.$\frac{{\sqrt{2}}}{2}$或3

分析 利用等比數(shù)列的性質(zhì)求出t,然后利用橢圓以及雙曲線的性質(zhì)求出離心率即可.

解答 解:實(shí)數(shù)1,t,4構(gòu)成一個(gè)等比數(shù)列,可得t=±2,
t=2時(shí),圓錐曲線$\frac{{x}^{2}}{2}$+y2=1,它的離心率為:e=$\frac{1}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$.
t=-2時(shí),圓錐曲線y2-$\frac{{x}^{2}}{2}$=1,它的離心率為:e=$\sqrt{3}$.
故選:B.

點(diǎn)評(píng) 本題考查圓錐曲線的離心率的求法,等比數(shù)列的性質(zhì)的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.要得到函數(shù)y=4sin(x+$\frac{π}{6}$)cos(x+$\frac{π}{6}$)圖象,只需把函數(shù)y=2sin2x的圖象(  )
A.向左平移$\frac{π}{3}$個(gè)單位B.向左平移$\frac{π}{6}$個(gè)單位
C.向右平移$\frac{π}{3}$個(gè)單位D.向右平移$\frac{π}{6}$個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.某三棱錐的正視圖如圖1所示,則在圖2①②③④中,所有可能成為這個(gè)三棱錐的俯視圖的是( 。
A.①②③B.①②④C.②③④D.①②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.(1)設(shè)x>-1,求函數(shù)y=x+$\frac{4}{x+1}$+6的最小值;
(2)求函數(shù)y=$\frac{x^2+8}{x-1}$(x>1)的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)和g(x)分別是R上的奇函數(shù)和偶函數(shù),且f(x)+g(x)=2ex,其中e為自然對(duì)數(shù)的底數(shù).
(Ⅰ)求函數(shù)f(x),g(x)的解析式;
(Ⅱ)當(dāng)x≥0時(shí),分別出求曲線y=f(x)和y=g(x)切線斜率的最小值;
(Ⅲ)設(shè)a≤0,b≥1,證明:當(dāng)x>0時(shí),曲線y=$\frac{f(x)}{x}$在曲線y=ag(x)+2(1-a)和y=bg(x)+2(1-b)之間,且相互之間沒(méi)有公共點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.函數(shù)f(x)圖象上不同兩點(diǎn)A(x1,y1),B(x2,y2)處的切線的斜率分別是kA,kB,|AB|為A、B兩點(diǎn)間距離,定義φ(A,B)=$\frac{|{k}_{A}-{k}_{B}|}{|AB|}$為曲線f(x)在點(diǎn)A與點(diǎn)B之間的“曲率”,給出以下問(wèn)題:
①存在這樣的函數(shù),該函數(shù)圖象上任意兩點(diǎn)之間的“曲率”為常數(shù);
②函數(shù)f(x)=x3-x2+1圖象上兩點(diǎn)A與B的橫坐標(biāo)分別為1,2,則點(diǎn)A與點(diǎn)B之間的“曲率”φ(A,B)>$\sqrt{3}$;
③函數(shù)f(x)=ax2+b(a>0,b∈R)圖象上任意兩點(diǎn)A、B之間的“曲率”φ(A,B)≤2a;
④設(shè)A(x1,y1),B(x2,y2)是曲線f(x)=ex上不同兩點(diǎn),且x1-x2=1,若t•φ(A,B)<1恒成立,則實(shí)數(shù)t的取值范圍是(-∞,1).
其中正確命題的序號(hào)為①③(填上所有正確命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.對(duì)某兩名高三學(xué)生在連續(xù)9次數(shù)學(xué)測(cè)試中的成績(jī)(單位:分)進(jìn)行統(tǒng)計(jì)得到如下折線圖.下面關(guān)于這兩位同學(xué)的數(shù)學(xué)成績(jī)的分析中,正確的共有( 。﹤(gè).

①甲同學(xué)的成績(jī)折線圖具有較好的對(duì)稱性,與正態(tài)曲線相近,故而平均成績(jī)?yōu)?30分;
②根據(jù)甲同學(xué)成績(jī)折線圖提供的數(shù)據(jù)進(jìn)行統(tǒng)計(jì),估計(jì)該同學(xué)平均成績(jī)?cè)趨^(qū)間[110,120]內(nèi);
③乙同學(xué)的數(shù)學(xué)成績(jī)與考試次號(hào)具有比較明顯的線性相關(guān)性,且為正相關(guān);
④乙同學(xué)在這連續(xù)九次測(cè)驗(yàn)中的最高分與最低分的差超過(guò)40分.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.設(shè)函數(shù)f(x)=ax3+3x,其圖象在點(diǎn)(1,f(1))處的切線l與直線x-3y-7=0垂直,則直線l與y軸的交點(diǎn)坐標(biāo)為( 。
A.(0,1)B.(0,2)C.(0,3)D.(0,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.復(fù)數(shù)z=$\frac{2}{1-i}$(i為虛數(shù)單位),則( 。
A.z的實(shí)部為2B.z的虛部為iC.$\overline z$=1+iD.|z|=$\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案