18.如圖,點(diǎn)A,B,C是圓O上的點(diǎn),且AB=2,BC=$\sqrt{6}$,∠CAB=120°,則∠AOB對(duì)應(yīng)的劣弧長(zhǎng)為( 。
A.πB.$\frac{π}{3}$C.$\frac{{\sqrt{2}}}{2}π$D.$\frac{π}{2}$

分析 由正弦定理求出sin∠ACB=$\frac{\sqrt{2}}{2}$,從而∠AOB=$\frac{π}{2}$,進(jìn)而OB=$\sqrt{2}$,由此能求出∠AOB對(duì)應(yīng)的劣弧長(zhǎng).

解答 解:由正弦定理知:
$\frac{AB}{sin∠ACB}$=$\frac{BC}{sin∠CAB}$,$\frac{2}{sin∠ACB}$=$\frac{\sqrt{6}}{sin120°}$,
∴sin∠ACB=$\frac{2sin120°}{\sqrt{6}}$=$\frac{\sqrt{2}}{2}$,∴$∠ACB=\frac{π}{4}$,
∴∠AOB=$\frac{π}{2}$,∴OB=$\sqrt{2}$,
∴∠AOB對(duì)應(yīng)的劣弧長(zhǎng):$\frac{1}{4}×2π×\sqrt{2}$=$\frac{\sqrt{2}}{2}$π.
故選:C.

點(diǎn)評(píng) 本題考查劣弧長(zhǎng)的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意正弦定理的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.直線x=1的傾斜角是(  )
A.0B.$\frac{π}{4}$C.$\frac{π}{2}$D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.函數(shù)f(x)=Asin(ωx+φ)(A>0,|φ|<$\frac{π}{2}$)其中的圖象如圖所示,為了得到g(x)=cos(2x-$\frac{π}{2}$)的圖象,只需將f(x)的圖象( 。
A.向左平移$\frac{π}{3}$個(gè)單位B.向右平移$\frac{π}{3}$個(gè)單位
C.向左平移$\frac{π}{6}$個(gè)單位D.向右平移$\frac{π}{6}$個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知點(diǎn)P在線段AB上,且|$\overrightarrow{AB}$=4|$\overrightarrow{AP}$|,設(shè)$\overrightarrow{PB}$=λ$\overrightarrow{PA}$,則實(shí)數(shù)λ的值為-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.設(shè)曲線y=ax2在點(diǎn)x=1處的切線與直線2x-y+b=0平行,則a=( 。
A.1B.$\frac{1}{2}$C.$-\frac{1}{2}$D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的短軸長(zhǎng)為( 。
A.2$\sqrt{3}$B.$\sqrt{3}$C.4D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.直線4x-2y+5=0的斜率是(  )
A.2B.-2C.5D.-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.中石化集團(tuán)通過(guò)與安哥拉國(guó)家石油公司合作,獲得了安哥拉深海油田區(qū)塊的開(kāi)采權(quán),集團(tuán)在某些區(qū)塊隨機(jī)初步勘探了部分口井,取得了地質(zhì)資料.進(jìn)入全面勘探時(shí)期后,集團(tuán)按網(wǎng)絡(luò)點(diǎn)來(lái)布置井位進(jìn)行全面勘探.由于勘探一口井的費(fèi)用很高,如果新設(shè)計(jì)的井位與原有井位重合或接近,便利用舊井的地質(zhì)資料,不必打這口新井.以節(jié)約勘探費(fèi)用.若口井勘探初期數(shù)據(jù)資料見(jiàn)如表:
井號(hào)I123456
坐標(biāo)(x,y)(km)(2,30)(4,40)(5,60)(6,50)(8,70)(1,y)
鉆探深度(km)2456810
出油量(L)407011090160205
(Ⅰ)1~6號(hào)舊井位置線性分布,借助前5組數(shù)據(jù)求得回歸直線方程為y=6.5x+a,求a,并估計(jì)y的預(yù)報(bào)值;
(Ⅱ)現(xiàn)準(zhǔn)備勘探新井7(1,25),若通過(guò)1、3、5、7號(hào)井計(jì)算出的$\widehatb,\widehata$的值與(I)中b,a的值差不超過(guò)10%,則使用位置最迫近的已有舊井6(1,y),否則在新位置打開(kāi),請(qǐng)判斷可否使用舊井?($\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n_x^{-2}}}},\widehata=\overline y-\widehatb\overline x,\sum_{i=1}^4{{x_{2i-1}}^2=94,\sum_{i=1}^4{{x_{2i-1}}{y_{2i-1}}=945}}$)
(Ⅲ)設(shè)口井出油量與勘探深度的比值k不低于20的勘探并稱為優(yōu)質(zhì)井,那么在原有6口井中任意勘探4口井,求勘探優(yōu)質(zhì)井?dāng)?shù)X的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{e}^{x}+x-1(x<0)}\\{-\frac{1}{3}{x}^{3}+2x(x≥0)}\end{array}\right.$有下列說(shuō)法:
①f(x)在[2,+∞)上是減函數(shù);
②f(x)的最大值是2;
③方程f(x)=0有2個(gè)實(shí)數(shù)根;
④f(x)≤$\frac{4\sqrt{2}}{3}$在R上恒成立,
正確的說(shuō)法是①③④.(寫出所有正確說(shuō)法的序號(hào)).

查看答案和解析>>

同步練習(xí)冊(cè)答案