12.已知函數(shù)f(x)的導函數(shù)f′(x),滿足(x-2)[f′(x)-f(x)]>0,且f(4-x)=e4-2xf(x),則下列關于
f(x)的命題正確的是(  )
A.f(3)>e2f(1)B.f(3)<ef(2)C.f(4)<e4f(0)D.f(4)<e5f(-1)

分析 令g(x)=$\frac{f(x)}{{e}^{x}}$,根據(jù)函數(shù)的單調性求出g(x)的單調性,再判斷g(x)的周期性,從而求出答案.

解答 解:令g(x)=$\frac{f(x)}{{e}^{x}}$,
則g′(x)=$\frac{f′(x)-f(x)}{{e}^{x}}$,
由(x-2)[f′(x)-f(x)]>0,
得:x>2時,f′(x)-f(x)>0,
故x>2時,g′(x)>0,g(x)在(2,+∞)遞增,
∵f(4-x)=e4-2xf(x),
∴$\frac{f(4-x)}{{e}^{4-x}}$=$\frac{f(x)}{{e}^{x}}$
∴g(4-x)=g(x),
∴g(3)=g(4-1)=g(1),
∴$\frac{f(3)}{{e}^{3}}$=$\frac{f(1)}{e}$,
∴f(3)=e2f(1)
∵g(3)>g(2),
∴$\frac{f(3)}{{e}^{3}}$>$\frac{f(2)}{{e}^{2}}$,
∴f(3)>ef(2),
∵g(0)=g(4-4)=g(4),
∴$\frac{f(0)}{{e}^{0}}$=$\frac{f(4)}{{e}^{4}}$,
即e4f(0)=f(4),
∵g(-1)=g(4-5)=g(5)>g(4),
∴$\frac{f(-1)}{{e}^{-1}}$>$\frac{f(4)}{{e}^{4}}$
∴e5f(-1)>f(4)
故選:D.

點評 本題考查了函數(shù)的單調性、周期性,最值問題,考查導數(shù)的應用,是一道中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

2.判斷下列命題是全稱命題還是特稱命題,并用符號“?”或“?”表示下列命題.
(1)自然數(shù)的平方大于或等于零;
(2)圓x2+y2=1上存在一個點到直線y=x+1的距離等于圓的半徑;
(3)有的函數(shù)既是奇函數(shù)又是增函數(shù);
(4)對于數(shù)列{$\frac{n}{n+1}$},總存在正整數(shù)n0,使得a${\;}_{{n}_{0}}$與1之差的絕對值小于0.01.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.設a,b∈R,i是虛數(shù)單位,則“ab=0”是“復數(shù)a-bi為純虛數(shù)”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.即不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知復數(shù)z1,z2滿足|z1-$\overline{{z}_{2}}$|=|1-z1z2||,則有( 。
A.|z1|<0且|z2|<1B.|z1|<1或|z2|<1C.|z1|=1且|z2|=1D.|z1|=1或|z2|=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.某縣共有戶籍人口60萬人,該縣60歲以上、百歲以下的人口占比13.8%,百歲及以上的老人15人.現(xiàn)從該縣60歲及以上、百歲以下的老人中隨機抽取230人,得到如下頻數(shù)分布表:
 年齡段(歲)[60,70)[70,80)[80,90)[90,99)
 人數(shù)(人) 125 75 255
(1)從樣本中70歲及以上老人中采用分層抽樣的方法抽取21人進一步了解他們的生活狀況,則80歲及以上老人應抽多少人?
(2)從(1)中所抽取的80歲及以上的老人中,再隨機抽取2人,求抽到90歲及以上老人的概率;
(3)該縣按省委辦公廳、省人民政府辦公廳《關于加強新時期老年人優(yōu)待服務工作的意見》精神,制定如下老年人生活補貼措施,由省、市、縣三級財政分級撥款.
①本縣戶籍60歲及以上居民,按城鄉(xiāng)居民養(yǎng)老保險實施辦法每月領取55元基本養(yǎng)老金;
②本縣戶籍80歲及以上老年人額外享受高齡老人生活補貼.
(a)百歲及以上老年人,每人每月發(fā)放345元生活補貼;
(b)90歲及以上、百歲以下老年人,每人每月發(fā)放200元的生活補貼;
(c)80歲及以上、90歲以下老年人,每人每月發(fā)放100元的生活補貼.
試估計政府執(zhí)行此項補貼措施的年度預算.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知方程$arctan\frac{x}{2}+arctan(2-x)=a$;
(1)若$a=\frac{π}{4}$,求$arccos\frac{x}{2}$的值;
(2)若方程有實數(shù)解,求實數(shù)a的取值范圍;
(3)若方程在區(qū)間[5,15]上有兩個相異的解α、β,求α+β的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知棱長都相等正四棱錐的側面積為16$\sqrt{3}$,則該正四棱錐內切球的表面積為(32-16$\sqrt{3}$)π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.在△ABC中,角A,B,C的對邊分別為a,b,c,滿足(2a-b)cosC-ccosB=0
(1)求角C的值;
(2)若三邊a,b,c滿足a+b=10,c=6,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知奇函數(shù)f(x) 的定義域為R,若f(x+2)為偶函數(shù),且f(-1)=-1,則f(2017)+f(2016)=(  )
A.-2B.-1C.0D.1

查看答案和解析>>

同步練習冊答案