17.等比數(shù)列{an}是單調(diào)遞增數(shù)列,且有a2a5=6,a3+a4=5,則其公比q=( 。
A.$\frac{2}{3}$B.$\frac{1}{5}$C.5D.$\frac{3}{2}$

分析 由等比數(shù)列的性質(zhì)可得:a2a5=6=a3a4,又a3+a4=5,q>1,解出即可得出.

解答 解:由等比數(shù)列的性質(zhì)可得:a2a5=6=a3a4,又a3+a4=5,q>1,解得a3=2,a4=3,
∴q=$\frac{3}{2}$.
故選:D.

點評 本題考查了等比數(shù)列的定義通項公式及其性質(zhì),考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知橢圓C的中心在原點,左焦點為F1(-1,0),右準(zhǔn)線方程為:x=4.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若橢圓C上點N到定點M(m,0)(0<m<2)的距離的最小值為1,求m的值及點N的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,在底面是矩形的四棱錐P-ABCD中,PA⊥平面ABCD,PA=AB,E是PD的中點.
(1)求證:PB∥平面EAC;
(2)求證:平面PDC⊥平面PAD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.(1-i)2016+(1+i)2016的值是(  )
A.21008B.21009C.0D.22016

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=lnx-ax2+1.
(1)若函數(shù)在x=4時取得極值,求a的值.
(2)若函數(shù)f(x)在區(qū)間(3,+∞)內(nèi)單調(diào)遞減,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.關(guān)于x的不等式mx2-(m+2)x+m+1>0解集為R,則實數(shù)m的取值范圍是( 。
A.m>$\frac{2\sqrt{3}}{3}$或m<-$\frac{2\sqrt{3}}{3}$B.m<-$\frac{2\sqrt{3}}{3}$或m>0C.m>$\frac{2\sqrt{3}}{3}$D.m<-$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在△ABC中,角A,B,C的對邊為a,b,c,角A,B,C的大小成等差數(shù)列,向量$\overrightarrow{m}$=(sin$\frac{A}{2}$,cos$\frac{A}{2}$),=(cos$\frac{A}{2}$,-$\sqrt{3}$cos$\frac{A}{2}$),f(A)=$\overrightarrow{m}$•$\overrightarrow{n}$,
(1)若f(A)=-$\frac{\sqrt{3}}{2}$,試判斷三角形ABC的形狀;
(2)若b=$\sqrt{3}$,a=$\sqrt{2}$,求邊c及S△ABC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在平行四邊形ABCD中,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow$,$\overrightarrow{DE}$=2$\overrightarrow{EC}$,則$\overrightarrow{BE}$=( 。
A.$\overrightarrow$-$\frac{1}{3}$$\overrightarrow{a}$B.$\overrightarrow$-$\frac{2}{3}$$\overrightarrow{a}$C.$\overrightarrow$-$\frac{4}{3}$$\overrightarrow{a}$D.$\overrightarrow$+$\frac{1}{3}$$\overrightarrow{a}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若方程x2+(m+2)x+m+5=0只有正根,則m的取值范圍是( 。
A.m≤-4或m≥4B.-5<m≤-4C.-5≤m≤-4D.-5<m<-2

查看答案和解析>>

同步練習(xí)冊答案