A. | $\frac{16π}{3}$ | B. | $\frac{32}{3}π$ | C. | 4$\sqrt{3}$π | D. | 16π |
分析 由已知中的三視圖,可得正視圖底邊對應(yīng)棱的中點,到三棱錐各個頂點的距離相等,進而求出球半徑,可得體積.
解答 解:由已知中的三視圖,可得該幾何體的直觀圖如圖所示:
取AB的中點F,AF的中點E,
由三視圖可得:AB垂直平面CDE,且平面CDE為$\sqrt{3}$的正三角形,AB=1+3=4,
∴AF=BF=2,EF=1,
∴CF=DF=$\sqrt{{1}^{2}+{\sqrt{3}}^{2}}$=2,
故F即為棱錐外接球的球心,半徑R=2,
故外接球的體積V=$\frac{4}{3}{πR}^{3}$=$\frac{32}{3}π$,
故選:B
點評 本題考查的知識點是由三視圖,求體積和表面積,根據(jù)已知的三視圖,判斷幾何體的形狀是解答的關(guān)鍵.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2或$\sqrt{3}$ | B. | 2或$\frac{2\sqrt{3}}{3}$ | C. | $\frac{2\sqrt{3}}{3}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4 | B. | 2 | C. | 1 | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(x)=2cos(2x+$\frac{π}{4}$) | B. | f(x)=-$\sqrt{2}$cos(x-$\frac{π}{4}$) | C. | f(x)=-$\sqrt{2}$cos(2x-$\frac{3π}{4}$) | D. | f(x)=$\sqrt{2}$cos(2x-$\frac{π}{4}$) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com