A. | 2或$\sqrt{3}$ | B. | 2或$\frac{2\sqrt{3}}{3}$ | C. | $\frac{2\sqrt{3}}{3}$ | D. | 2 |
分析 討論雙曲線的焦點在x軸或y軸上,設出雙曲線的方程,求得漸近線方程,運用斜率,和離心率公式計算即可得到.
解答 解:若雙曲線的焦點在x軸上,設雙曲線的方程為$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1,
漸近線的方程為y=±$\frac{a}$x,由題意可得b=$\sqrt{3}$a,
可得c=$\sqrt{{a}^{2}+^{2}}$=2a,即e=$\frac{c}{a}$=2;
若雙曲線的焦點在y軸上,設雙曲線的方程為$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1,
漸近線的方程為y=±$\frac{a}$x,由題意可得a=$\sqrt{3}$b,
可得c=$\sqrt{{a}^{2}+^{2}}$=$\frac{2\sqrt{3}}{3}$a,即e=$\frac{c}{a}$=$\frac{2\sqrt{3}}{3}$.
綜上可得e=2或$\frac{2\sqrt{3}}{3}$.
故選:B.
點評 本題考查雙曲線的離心率的求法,注意討論雙曲線的焦點位置,運用漸近線方程,考查運算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -3 | B. | -1 | C. | 1 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $-\frac{3}{2}$ | B. | $\frac{{\sqrt{3}}}{2}-2$ | C. | $-\frac{{\sqrt{3}}}{2}-2$ | D. | $-\frac{5}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{16π}{3}$ | B. | $\frac{32}{3}π$ | C. | 4$\sqrt{3}$π | D. | 16π |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com