分析 用$\overrightarrow{CP},\overrightarrow{CQ}$表示出$\overrightarrow{CG}$,根據(jù)P,G,Q三點共線列出方程得出m,n的關系.
解答 解取AB中點D,連結CD,則$\overrightarrow{CD}=\frac{1}{2}\overrightarrow{CA}+\frac{1}{2}\overrightarrow{CB}$,
∵G是△ABC的重心,∴$\overrightarrow{CG}=\frac{2}{3}$$\overrightarrow{CD}$=$\frac{1}{3}$$\overrightarrow{CA}$+$\frac{1}{3}$$\overrightarrow{CB}$.
∵$\overrightarrow{CP}$=m$\overrightarrow{CA}$,$\overrightarrow{CQ}$=n$\overrightarrow{CB}$,
∴$\overrightarrow{CA}=\frac{1}{m}\overrightarrow{CP}$,$\overrightarrow{CB}=\frac{1}{n}\overrightarrow{CQ}$,
∴$\overrightarrow{CG}=\frac{1}{3m}\overrightarrow{CP}$+$\frac{1}{3n}\overrightarrow{CQ}$.
∵P,G,Q三點共線,
∴$\frac{1}{3m}+\frac{1}{3n}=1$,
∴$\frac{1}{m}+\frac{1}{n}=3$
故答案為:3.
點評 本題考查了平面向量的線性運算的幾何意義,平面向量的基本定理,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $-\frac{3}{2}$ | B. | $\frac{{\sqrt{3}}}{2}-2$ | C. | $-\frac{{\sqrt{3}}}{2}-2$ | D. | $-\frac{5}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 等邊三角形 | B. | 直角三角形 | ||
C. | 兩腰長都為$\frac{{\sqrt{3}}}{2}$的等腰三角形 | D. | 兩腰長都為$\frac{{\sqrt{2}}}{2}$的等腰三角形 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{16π}{3}$ | B. | $\frac{32}{3}π$ | C. | 4$\sqrt{3}$π | D. | 16π |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
人均購物消費情況 | [0,2000] | (2000,4000] | (4000,6000] | (6000,8000] | (8000,10000] |
額數(shù) | 15 | 20 | 9 | 3 | 3 |
人均購物消費不超過4000元 | 人均購物消費超過4000元 | 合計 | |
資助超過500元 | 30 | ||
資助不超過500元 | 6 | ||
合計 |
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | B. | ||||
C. | D. |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2+i | B. | -2+i | C. | 2-i | D. | -2-i |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com