13.定積分${∫}_{-2}^{-1}$$\sqrt{-3-4x-{x}^{2}}$dx=$\frac{π}{4}$.

分析 定積分${∫}_{-2}^{-1}$$\sqrt{-3-4x-{x}^{2}}$dx表示(x+2)2+y2=1的面積為四分之一,問題得以解決.

解答 解:y=$\sqrt{-3-4x-{x}^{2}}$,即y2=-3-4x-x2,即(x+2)2+y2=1,
則定積分${∫}_{-2}^{-1}$$\sqrt{-3-4x-{x}^{2}}$dx表示(x+2)2+y2=1的面積為四分之一,
故${∫}_{-2}^{-1}$$\sqrt{-3-4x-{x}^{2}}$dx=$\frac{π}{4}$
故答案為:$\frac{π}{4}$.

點評 本題考查了定積分的幾何意義,畫圖是關(guān)鍵,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

3.已知f(x)=ln(1-x)-ln(1+x).
(1)求出函數(shù)f(x)的定義域,并求不等式f(x)>0的解集.
(2)判斷f(x)的奇偶性并證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.某學生在上學路上要經(jīng)過4個路口,假設(shè)在各路口是否遇到紅燈是相互獨立的,遇到紅燈的概率都是$\frac{1}{4}$.
(1)求該生在上學路上到第三個路口時首次遇到紅燈的概率;
(2)求該生在上學路上遇到紅燈次數(shù)ξ的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.若a1=1,且a1+2a2+3a3+…+nan=n2,則an=2-$\frac{1}{n}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.實數(shù)在數(shù)軸上對應(yīng)的點如圖所示:
化簡:|a|-|a+b|+|a+c|+|c-b|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知集合I={a,b,c,d,e,f,g,h},(∁IA)∪(∁IB)={a,b,c,e,f,h},(∁IA)∩(CIB)={a,e},(∁IA)∩B={c,f},求集合A.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.隨機擲一枚均勻的正方體骰子(正方體骰子的六個面上的點數(shù)分別為1,2,3,4,5,6),每次實驗擲三次,則每次實驗中擲三次骰子的點數(shù)之和為6的概率為( 。
A.$\frac{5}{36}$B.$\frac{21}{216}$C.$\frac{5}{108}$D.$\frac{1}{16}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)f(x)=ex(e為自然對數(shù)的底數(shù),e=2.71828…),g(x)=$\frac{a}{2}$x+b(a,b∈R).
(1)若h(x)=f(x)g(x),b=1-$\frac{a}{2}$.求h(x)在[0,1]上的最大值φ(a)的表達式;
(2)若a=4時,方程f(x)=g(x)在[0,2]上恰有兩個相異實根,求實根b的取值范圍;
(3)若b=-$\frac{15}{2}$,a∈N*,求使f(x)的圖象恒在g(x)圖象上方的最大正整數(shù)a.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.如圖,網(wǎng)格紙上小正方形的邊長為1,粗實線畫出的是某幾何體的三視圖,則該幾何體的體積為( 。
A.8+πB.8+2πC.8+3πD.8+4π

查看答案和解析>>

同步練習冊答案