1.甲、乙兩所學校高三年級分別有1200人,1000人,為了了解兩所學校全體高三年級學生在該地區(qū)六校聯(lián)考的數(shù)學成績情況,采用分層抽樣方法從兩所學校一共抽取了110名學生的數(shù)學成績,并作出了頻數(shù)分布統(tǒng)計表如下:
甲校:
分組[70,80)[80,90)[90,100)[100,110)
頻數(shù)34815
分組[110,120)[120,130)[130,140)[140,150]
頻數(shù)15x32
乙校:
分組[70,80)[80,90)[90,100)[100,110)
頻數(shù)1289
分組[110,120)[120,130)[130,140)[140,150]
頻數(shù)1010y3
(1)計算x,y的值;
(2)若規(guī)定考試成績在[120,150]內(nèi)為優(yōu)秀,請分別估計兩所學校數(shù)學成績的優(yōu)秀率;
(3)由以上統(tǒng)計數(shù)據(jù)填寫下面的2×2列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.10的前提下認為兩所學校的數(shù)學成績有差異.
甲校乙校總計
優(yōu)秀
非優(yōu)秀
總計
參考數(shù)據(jù)與公式:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$
臨界值表:
P(K2≥k00.100.050.010
k02.7063.8416.635

分析 (1)由頻數(shù)與總數(shù)關系可得x,y的值,先求出從甲、乙校各抽取的人數(shù),再減去已知人數(shù)即得;
(2)即求頻率,按對應人數(shù)除以總數(shù)即可;
(3)按公式代入計算得k≈2.829>2.706,對照臨界值表可知在犯錯誤的概率不超過0.10的前提下認為兩個學校的數(shù)學成績有差異.

解答 解:(1)從甲校抽取110×$\frac{1200}{1200+1000}$=60(人),
從乙校抽取110×$\frac{1200}{1200+1000}$=50(人),故x=10,y=7.
(2)估計甲校數(shù)學成績的優(yōu)秀率為$\frac{15}{60}$×100%=25%,
乙校數(shù)學成績的優(yōu)秀率為$\frac{20}{50}$×100%=40%.
(3)表格填寫如圖,

甲校乙校總計
優(yōu)秀152035
非優(yōu)秀453075
總計6050110
K2的觀測值k=$\frac{110×(15×30-20×45)^{2}}{60×50×35×75}$≈2.829>2.706,
故在犯錯誤的概率不超過0.10的前提下認為兩個學校的數(shù)學成績有差異.

點評 本題主要考查獨立性檢驗的應用,考查概率的計算,解題的關鍵是正確運算出觀測值,理解臨界值對應的概率的意義,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

11.設函數(shù)f(x)=$\frac{1}{1+x}$,g(x)=x2+2,則f[g(2)]=( 。
A.$\frac{1}{7}$B.$\frac{2}{7}$C.$\frac{3}{7}$D.$\frac{4}{7}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)f(x)=sin(2x-$\frac{π}{6}$)+2cos2x-1(x∈R)
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)在△ABC中,三內(nèi)角A,B,C的對邊分別為b、a、c,若f(A)=$\frac{1}{2}$,且$\overrightarrow{AB}$•$\overrightarrow{AC}$=9,b,a,c成等差數(shù)列,求角A及a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知等比數(shù)列{an}為遞增數(shù)列,且a52=a10,2(an+an+2)=5an+1,則數(shù)列{an}的通項公式an=(  )
A.2nB.2n+1C.($\frac{1}{2}$)nD.($\frac{1}{2}$)n+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.求值:
(Ⅰ)${log_3}\sqrt{27}+lg25+lg4+{7^{{{log}_7}2}}+lg1$;
(Ⅱ)0.027${\;}^{-\frac{1}{3}}$-(-$\frac{1}{6}$)-2+810.75+($\frac{1}{9}$)0-3-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.若直線m:y=kx+1與雙曲線x2-y2=1的左支交于不同的A、B兩點.
(1)求實數(shù)k的取值范圍;
(2)若直線l經(jīng)過定點P(-1,0),且過弦AB的中點M,求直線l在y軸上的截距b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.F1,F(xiàn)2是橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1的兩個焦點,M是橢圓上一點,若MF1⊥MF2,則點M的橫坐標為±$\frac{5\sqrt{7}}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知橢圓的焦點在x軸,離心率e=$\frac{1}{2}$,短軸長為2$\sqrt{5}$,直線y=x+m與橢圓相交于A、B兩點,且|AB|=$\frac{4\sqrt{5}}{5}$.
(1)求橢圓的方程; 
(2)求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知函數(shù)f(x)=x2-(3+2a)x+6a,其中a>0.若有實數(shù)b使得$\left\{\begin{array}{l}{f(b)≤0}\\{f{(b}^{2}+1)≤0}\end{array}\right.$成立,則實數(shù)a的取值范圍是(0,$\frac{\sqrt{2}}{2}$]∪[5,+∞).

查看答案和解析>>

同步練習冊答案