分析 (1)直線與雙曲線方程聯(lián)立消去y,根據(jù)判別大于0及與雙曲線x2-y2=1的左支交于不同的A、B兩點(diǎn),求得k的范圍;
(2)表示出AB中點(diǎn)的坐標(biāo),進(jìn)而表示出直線l的方程,令x=0求得b關(guān)于k的表達(dá)式,根據(jù)k的范圍求得b的范圍.
解答 解:(1)由直線m:y=kx+1與雙曲線x2-y2=1聯(lián)立,消去y得(1-k2)x2-2kx-2=0,
則$\left\{\begin{array}{l}{4{k}^{2}+8(1-{k}^{2})>0}\\{\frac{2k}{1-{k}^{2}}<0}\\{\frac{-2}{1-{k}^{2}}>0}\end{array}\right.$,∴1<k<$\sqrt{2}$;
(2)AB中點(diǎn)為M($\frac{k}{1-{k}^{2}}$,$\frac{1}{1-{k}^{2}}$)
∴l(xiāng)方程為y=$\frac{1}{k+1-{k}^{2}}$(x+1),令x=0,
得b=$\frac{1}{k+1-{k}^{2}}$=$\frac{1}{-(k-\frac{1}{2})^{2}+\frac{5}{4}}$,
∵1<k<$\sqrt{2}$,
∴b的范圍是(-∞,1)∪($\sqrt{2}$+1,+∞).
點(diǎn)評(píng) 本題主要考查了直線與圓錐曲線綜合問題.用k表示b的過程即是建立目標(biāo)函數(shù)的過程,本題要注意k的取值范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | p真q假 | B. | p∧q為真 | C. | p,q均為假 | D. | p∨q為真 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充要條件 | B. | 充分不必要條件 | ||
C. | 必要不充分條件 | D. | 既不充分又不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{2}{7}$)${\;}^{\frac{1}{4}}$ | B. | ($\frac{2}{7}$)4 | C. | 5${\;}^{\frac{1}{4}}$ | D. | ($\frac{7}{2}$)${\;}^{\frac{1}{4}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
分組 | [70,80) | [80,90) | [90,100) | [100,110) |
頻數(shù) | 3 | 4 | 8 | 15 |
分組 | [110,120) | [120,130) | [130,140) | [140,150] |
頻數(shù) | 15 | x | 3 | 2 |
分組 | [70,80) | [80,90) | [90,100) | [100,110) |
頻數(shù) | 1 | 2 | 8 | 9 |
分組 | [110,120) | [120,130) | [130,140) | [140,150] |
頻數(shù) | 10 | 10 | y | 3 |
甲校 | 乙校 | 總計(jì) | |
優(yōu)秀 | |||
非優(yōu)秀 | |||
總計(jì) |
P(K2≥k0) | 0.10 | 0.05 | 0.010 |
k0 | 2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com