6.若直線m:y=kx+1與雙曲線x2-y2=1的左支交于不同的A、B兩點(diǎn).
(1)求實(shí)數(shù)k的取值范圍;
(2)若直線l經(jīng)過定點(diǎn)P(-1,0),且過弦AB的中點(diǎn)M,求直線l在y軸上的截距b的取值范圍.

分析 (1)直線與雙曲線方程聯(lián)立消去y,根據(jù)判別大于0及與雙曲線x2-y2=1的左支交于不同的A、B兩點(diǎn),求得k的范圍;
(2)表示出AB中點(diǎn)的坐標(biāo),進(jìn)而表示出直線l的方程,令x=0求得b關(guān)于k的表達(dá)式,根據(jù)k的范圍求得b的范圍.

解答 解:(1)由直線m:y=kx+1與雙曲線x2-y2=1聯(lián)立,消去y得(1-k2)x2-2kx-2=0,
則$\left\{\begin{array}{l}{4{k}^{2}+8(1-{k}^{2})>0}\\{\frac{2k}{1-{k}^{2}}<0}\\{\frac{-2}{1-{k}^{2}}>0}\end{array}\right.$,∴1<k<$\sqrt{2}$;
(2)AB中點(diǎn)為M($\frac{k}{1-{k}^{2}}$,$\frac{1}{1-{k}^{2}}$)
∴l(xiāng)方程為y=$\frac{1}{k+1-{k}^{2}}$(x+1),令x=0,
得b=$\frac{1}{k+1-{k}^{2}}$=$\frac{1}{-(k-\frac{1}{2})^{2}+\frac{5}{4}}$,
∵1<k<$\sqrt{2}$,
∴b的范圍是(-∞,1)∪($\sqrt{2}$+1,+∞).

點(diǎn)評(píng) 本題主要考查了直線與圓錐曲線綜合問題.用k表示b的過程即是建立目標(biāo)函數(shù)的過程,本題要注意k的取值范圍.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知命題p:“x2<1”是“x<1”的充要條件,命題q:“?x∈R,x2-3<0”的否定是“?x0∈R,x02-3>0”,則( 。
A.p真q假B.p∧q為真C.p,q均為假D.p∨q為真

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.k>9是方程$\frac{x^2}{9-k}+\frac{y^2}{k-4}=1$表示雙曲線的( 。
A.充要條件B.充分不必要條件
C.必要不充分條件D.既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知2x=7y=k,$\frac{1}{x}$-$\frac{1}{y}$=4,則k的值是(  )
A.($\frac{2}{7}$)${\;}^{\frac{1}{4}}$B.($\frac{2}{7}$)4C.5${\;}^{\frac{1}{4}}$D.($\frac{7}{2}$)${\;}^{\frac{1}{4}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.甲、乙兩所學(xué)校高三年級(jí)分別有1200人,1000人,為了了解兩所學(xué)校全體高三年級(jí)學(xué)生在該地區(qū)六校聯(lián)考的數(shù)學(xué)成績(jī)情況,采用分層抽樣方法從兩所學(xué)校一共抽取了110名學(xué)生的數(shù)學(xué)成績(jī),并作出了頻數(shù)分布統(tǒng)計(jì)表如下:
甲校:
分組[70,80)[80,90)[90,100)[100,110)
頻數(shù)34815
分組[110,120)[120,130)[130,140)[140,150]
頻數(shù)15x32
乙校:
分組[70,80)[80,90)[90,100)[100,110)
頻數(shù)1289
分組[110,120)[120,130)[130,140)[140,150]
頻數(shù)1010y3
(1)計(jì)算x,y的值;
(2)若規(guī)定考試成績(jī)?cè)赱120,150]內(nèi)為優(yōu)秀,請(qǐng)分別估計(jì)兩所學(xué)校數(shù)學(xué)成績(jī)的優(yōu)秀率;
(3)由以上統(tǒng)計(jì)數(shù)據(jù)填寫下面的2×2列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過0.10的前提下認(rèn)為兩所學(xué)校的數(shù)學(xué)成績(jī)有差異.
甲校乙校總計(jì)
優(yōu)秀
非優(yōu)秀
總計(jì)
參考數(shù)據(jù)與公式:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$
臨界值表:
P(K2≥k00.100.050.010
k02.7063.8416.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.根據(jù)以下算法,畫出框圖.
算法:
(1)輸入x;
(2)判斷x的正負(fù);
①若x≥0,則y=x;
②若x<0,則y=-x.
(3)輸出y.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.過P(-4,1)的直線l與雙曲線$\frac{x^2}{4}-{y^2}=1$僅有一個(gè)公共點(diǎn),則這樣的直線l的有2條.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)0≤x≤1,證明:a2x+b2(1-x)≥[ax+b(1-x)]2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.△ABC中,D、E三等分BC,F(xiàn)為AC的中點(diǎn),BF分別與AD、AE交于M、N.試求△AMN與△ABC面積之比.

查看答案和解析>>

同步練習(xí)冊(cè)答案