13.F1,F(xiàn)2是橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1的兩個(gè)焦點(diǎn),M是橢圓上一點(diǎn),若MF1⊥MF2,則點(diǎn)M的橫坐標(biāo)為±$\frac{5\sqrt{7}}{4}$.

分析 求得橢圓的a,b,c,可得焦點(diǎn)的坐標(biāo),再設(shè)M(m,n),求得向量MF1的坐標(biāo),向量MF2的坐標(biāo),再由向量垂直的條件:數(shù)量積為0,結(jié)合M在橢圓上,滿(mǎn)足橢圓方程,解方程可得m的值.

解答 解:橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1的a=5,b=3,c=$\sqrt{{a}^{2}-^{2}}$=4,
F1(-4,0),F(xiàn)2(4,0),
設(shè)M(m,n),即有$\overrightarrow{M{F}_{1}}$=(-4-m,-n),$\overrightarrow{M{F}_{2}}$=(4-m,-n),
若MF1⊥MF2,則$\overrightarrow{M{F}_{1}}$•$\overrightarrow{M{F}_{2}}$=(-4-m)(4-m)+n2=0,
可得m2+n2=16,①
又M在橢圓上,可得$\frac{{m}^{2}}{25}$+$\frac{{n}^{2}}{9}$=1,②
由①②解得,m=±$\frac{5\sqrt{7}}{4}$.
故答案為:±$\frac{5\sqrt{7}}{4}$.

點(diǎn)評(píng) 本題考查橢圓的方程和性質(zhì),考查向量垂直的條件:數(shù)量積為0,考查解方程的運(yùn)算求解能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.函數(shù)f(x)是奇函數(shù),且對(duì)于任意的x∈R都有f(x+2)=f(x),若f(0.5)=-1,則f(7.5)=( 。
A.-1B.0C.0.5D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.a(chǎn),b∈R,且a+2b=2,則2a+4b的最小值是(  )
A.24B.16C.8D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.甲、乙兩所學(xué)校高三年級(jí)分別有1200人,1000人,為了了解兩所學(xué)校全體高三年級(jí)學(xué)生在該地區(qū)六校聯(lián)考的數(shù)學(xué)成績(jī)情況,采用分層抽樣方法從兩所學(xué)校一共抽取了110名學(xué)生的數(shù)學(xué)成績(jī),并作出了頻數(shù)分布統(tǒng)計(jì)表如下:
甲校:
分組[70,80)[80,90)[90,100)[100,110)
頻數(shù)34815
分組[110,120)[120,130)[130,140)[140,150]
頻數(shù)15x32
乙校:
分組[70,80)[80,90)[90,100)[100,110)
頻數(shù)1289
分組[110,120)[120,130)[130,140)[140,150]
頻數(shù)1010y3
(1)計(jì)算x,y的值;
(2)若規(guī)定考試成績(jī)?cè)赱120,150]內(nèi)為優(yōu)秀,請(qǐng)分別估計(jì)兩所學(xué)校數(shù)學(xué)成績(jī)的優(yōu)秀率;
(3)由以上統(tǒng)計(jì)數(shù)據(jù)填寫(xiě)下面的2×2列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過(guò)0.10的前提下認(rèn)為兩所學(xué)校的數(shù)學(xué)成績(jī)有差異.
甲校乙校總計(jì)
優(yōu)秀
非優(yōu)秀
總計(jì)
參考數(shù)據(jù)與公式:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$
臨界值表:
P(K2≥k00.100.050.010
k02.7063.8416.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.若雙曲線(xiàn)$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a、b∈R+)與x=3的一個(gè)交點(diǎn)P與兩焦點(diǎn)的距離分別是$\frac{13}{2}$和$\frac{5}{2}$,求a與b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.過(guò)P(-4,1)的直線(xiàn)l與雙曲線(xiàn)$\frac{x^2}{4}-{y^2}=1$僅有一個(gè)公共點(diǎn),則這樣的直線(xiàn)l的有2條.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別為F1、F2,右頂點(diǎn)為A,上頂點(diǎn)為B.已知|AB|=$\frac{\sqrt{3}}{2}$|F1F2|,MF2|=2$\sqrt{2}$,
(1)求橢圓的離心率;
(2)設(shè)P為橢圓上異于其頂點(diǎn)的一點(diǎn),線(xiàn)段PB為直徑的圓經(jīng)過(guò)點(diǎn)F1,經(jīng)過(guò)點(diǎn)F2的直線(xiàn)l與該圓相切于點(diǎn)M,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知命題p:不等式(a-2)x2+2(a-2)x-4<0對(duì)任意實(shí)數(shù)x恒成立,命題q:函數(shù)y=loga(1-2x)在定義域上單調(diào)遞增,若“p∨q”為真命題且“p∧q”為假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知$f(x)=asin(2x+\frac{π}{6})+b$,(a,b∈R且a≠0)
(1)當(dāng)a=-2,b=0時(shí),求f(x)的最小正周期與單調(diào)減區(qū)間;
(2)當(dāng)$x∈[\frac{π}{4},\frac{3π}{4}]$時(shí),其值域?yàn)閇-3,1],求a,b的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案