17.給出下面類比推理命題(其中Q為有理數(shù)集,R為實(shí)數(shù)集,C為復(fù)數(shù)集)
①若“a,b∈R,則a-b>0⇒a>b”類比推出“a,b∈C,則a-b>0⇒a>b”;
②“若a,b∈R,則a•b∈R”類比推出“若a,b∈C,則a•b∈C″;
③由向量$\overrightarrow a$的性質(zhì)|$\overrightarrow a$|2=${\overrightarrow a^2}$,可以類比得到復(fù)數(shù)z的性質(zhì):|z|2=z2;
④“若a,b,c,d∈R,則a+bi=c+di⇒a=c,b=d”類比推出“若a,b,c,d∈Q,則a+b$\sqrt{2}$=c+d$\sqrt{2}$⇒a=c,b=d”;
其中類比結(jié)論正確的個數(shù)是( 。
A.1B.2C.3D.4

分析 在數(shù)集的擴(kuò)展過程中,有些性質(zhì)是可以傳遞的,但有些性質(zhì)不能傳遞,因此,要判斷類比的結(jié)果是否正確,關(guān)鍵是要在新的數(shù)集里進(jìn)行論證,當(dāng)然要想證明一個結(jié)論是錯誤的,也可直接舉一個反例,要想得到本題的正確答案,可對4個結(jié)論逐一進(jìn)行分析,不難解答.

解答 解:①若a,b∈C,當(dāng)a=1+i,b=i時(shí),a-b=1>0,但a,b 是兩個虛數(shù),不能比較大。盛馘e誤
②“若a,b∈R,則a•b∈R”類比推出“若a,b∈C,則a•b∈C″,正確;
③由向量$\overrightarrow a$的性質(zhì)|$\overrightarrow a$|2=${\overrightarrow a^2}$,類比復(fù)數(shù)z的性質(zhì)|z|2=z2;兩者屬性不同一個是數(shù),一個是即有大小又有方向的量,不具有類比性,故錯誤;
④在有理數(shù)集Q中,若a+b$\sqrt{2}$=c+d$\sqrt{2}$⇒(a-c)+$\sqrt{2}$(b-d)=0⇒a=c,b=d”,正確;
故選:B.

點(diǎn)評 本題考查類比推理,解題的關(guān)鍵掌握并理解類比推理的定義,并能根據(jù)類比的定義鑒別所舉的事例是否滿足類比推理.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.直線y=2x-2與拋物線y2=2x的交點(diǎn)坐標(biāo)為(2,2),$(\frac{1}{2},-1)$..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在等差數(shù)列{an}中,其前n項(xiàng)和為Sn,S2=9,S4=22,則S8=60.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)y=$\sqrt{{x^2}-9}$的定義域?yàn)榧螦,集合B={x|x-a<0,a∈R}.
(Ⅰ)求集合A;
(Ⅱ)求A∩B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知拋物線C:y2=2px(p>0),其焦點(diǎn)為F(1,0),過F作斜率為k的直線交拋物線C于A、B兩點(diǎn),交其準(zhǔn)線于P點(diǎn).
(Ⅰ)求P的值;
(Ⅱ)設(shè)|PA|+|PB|=λ|PA|•|PB|•|PF|,若k∈[$\frac{1}{4}$,1],求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.${∫}_{0}^{1}$(-x2-1)dx=(  )
A.$-\frac{1}{3}$B.-2C.-1D.$-\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.異面直線a,b成60°,直線c⊥a,則直線b與c所成的角的范圍為[30°,90°].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖所示,在三棱錐P-ABC中,AB=BC=$\sqrt{6}$,平面PAC⊥平面ABC,PD⊥AC于點(diǎn)D,AD=1,CD=3,PD=$\sqrt{3}$
(Ⅰ)證明:BC⊥PB;
(Ⅱ)求直線AP與平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)集合U={1,2,3,4,5,6,7,8},A={1,2,3},B={3,5},則(∁UA)∩B=(  )
A.{1,2,3,4}B.{3,5}C.{5}D.{1,2,3,4,5}

查看答案和解析>>

同步練習(xí)冊答案