設(shè)a,b,c是正實(shí)數(shù),求證:aabbcc≥(abc)

 

見(jiàn)解析

【解析】

試題分析:不妨設(shè)a≥b≥c>0,則lga≥lgb≥lgc,據(jù)排序不等式,可得三個(gè)不等式,相加,即可得出結(jié)論.

證明:不妨設(shè)a≥b≥c>0,則lga≥lgb≥lgc.

據(jù)排序不等式有:

alga+blgb+clgc≥blga+clgb+algc

alga+blgb+clgc≥clga+algb+blgc

alga+blgb+clgc=alga+blgb+clgc

上述三式相加得:

3(alga+blgb+clgc)≥(a+b+c)(lga+lgb+lgc)

即lg(aabbcc)≥lg(abc)

故aabbcc≥(abc)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:[同步]2014年新人教A版選修4-6 1.2最大公因數(shù)與最小公倍數(shù) 題型:選擇題

136和1275的最大公約數(shù)是( )

A.3 B.9 C.17 D.51

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:[同步]2014年新人教A版選修4-5 4.2數(shù)學(xué)歸納法證明不等式舉例(解析版) 題型:填空題

用數(shù)學(xué)歸納法證明“(n+1)(n+2)…(n+n)=2n•1•2•…•(2n﹣1)”(n∈N+)時(shí),從“n=k到n=k+1”時(shí),左邊應(yīng)增添的式子是 .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:[同步]2014年新人教A版選修4-5 4.1數(shù)學(xué)歸納法練習(xí)卷(解析版) 題型:選擇題

證明1++…+(n∈N*),假設(shè)n=k時(shí)成立,當(dāng)n=k+1時(shí),左端增加的項(xiàng)數(shù)是( )

A.1項(xiàng) B.k﹣1項(xiàng) C.k項(xiàng) D.2k項(xiàng)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:[同步]2014年新人教A版選修4-5 4.1數(shù)學(xué)歸納法練習(xí)卷(解析版) 題型:選擇題

(2014•河西區(qū)三模)用數(shù)學(xué)歸納法證明1+2+3+…+n3=,則當(dāng)n=k+1時(shí),左端應(yīng)在n=k的基礎(chǔ)上加上( )

A.k3+1

B.(k+1)3

C.

D.(k3+1)+(k3+2)+(k3+3)+…+(k3+1)3

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:[同步]2014年新人教A版選修4-5 3.2一般形式柯西不等式練習(xí)卷(解析版) 題型:填空題

(2014•遼寧)對(duì)于c>0,當(dāng)非零實(shí)數(shù)a,b滿足4a2﹣2ab+b2﹣c=0且使|2a+b|最大時(shí),++的最小值為 .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:[同步]2014年新人教A版選修4-5 3.2一般形式柯西不等式練習(xí)卷(解析版) 題型:選擇題

函數(shù)( )

A.6 B.2 C.5 D.2

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:[同步]2014年新人教A版選修4-5 3.1二維形式柯西不等式練習(xí)卷(解析版) 題型:選擇題

已知a+b=1,則以下成立的是( )

A.a2+b2>1 B.a2+b2=1 C.a2+b2<1 D.a2b2=1

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:[同步]2014年新人教A版選修4-5 2.1比較法練習(xí)卷(解析版) 題型:填空題

要證明“+”可選擇的方法有以下幾種,其中最合理的是 .(填序號(hào))

①反證法

②分析法

③綜合法.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案