9.用系統(tǒng)抽樣的方法從300名學(xué)生中抽取容量為20的樣本,將300名學(xué)生從1-300編號,按編號順序平均分組.若第16組應(yīng)抽出的號碼為232,則第一組中抽出的號碼是( 。
A.5B.6C.7D.8

分析 由系統(tǒng)抽樣的法則,可知第n組抽出個(gè)數(shù)的號碼應(yīng)為x+15(n-1),即可得出結(jié)論.

解答 解:由題意,可知系統(tǒng)抽樣的組數(shù)為20,間隔為15,設(shè)第一組抽出的號碼為x,則由系統(tǒng)抽樣的法則,可知第n組抽出個(gè)數(shù)的號碼應(yīng)為x+15(n-1),
所以第16組應(yīng)抽出的號碼為x+15(16-1)=232,
解得x=7.
故選:C.

點(diǎn)評 本題考查的知識點(diǎn)是系統(tǒng)抽樣方法,其中熟練掌握系統(tǒng)抽樣方法的步驟和方法是解答的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在△ABC中,角A,B,C的對邊分別為a,b,c,滿足$\sqrt{3}a=b(sinC+\sqrt{3}cosC)$.
(1)求∠ABC;
(2)若$∠A=\frac{π}{3}$,D為△ABC外一點(diǎn),DB=2,DC=1,求四邊形ABDC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)$f(x)=2sin({2x-\frac{π}{3}})-1$,在$[{0,\frac{π}{2}}]$隨機(jī)取一個(gè)實(shí)數(shù)a,則f(a)>0的概率為( 。
A.$\frac{5}{6}$B.$\frac{2}{3}$C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某市每年中考都要舉行實(shí)驗(yàn)操作考試和體能測試,初三(1)班共有30名學(xué)生,如圖表格為該班學(xué)生的這兩項(xiàng)成績,表中實(shí)驗(yàn)操作考試和體能測試都為優(yōu)秀的學(xué)生人數(shù)為6人.由于部分?jǐn)?shù)據(jù)丟失,只知道從這班30人中隨機(jī)抽取一個(gè),實(shí)驗(yàn)操作成績合格,且體能測試成績合格或合格以上的概率是$\frac{1}{6}$.
實(shí)驗(yàn)操作
不合格合格良好優(yōu)秀
體能測試不合格0111
合格021b
良好1a24
優(yōu)秀1136
(Ⅰ)試確定a,b的值;
(Ⅱ)從30人中任意抽取3人,設(shè)實(shí)驗(yàn)操作考試和體能測試成績都是良好或優(yōu)秀的學(xué)生人數(shù)為X,求隨機(jī)變量X的分布列及數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)函數(shù)f(x)=|x-a|+|2x+2|-5(a∈R).
(Ⅰ)試比較f(-1)與f(a)的大小;
(Ⅱ)當(dāng)a=-5時(shí),求函數(shù)f(x)的圖象與軸圍成的圖形面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)橢圓E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的長軸長為6,離心率$e=\frac{{\sqrt{6}}}{3}$,O為坐標(biāo)原點(diǎn).
(Ⅰ)求橢圓E標(biāo)準(zhǔn)方程;
(Ⅱ)如圖,若分別過橢圓E的左右焦點(diǎn)F1,F(xiàn)2的動(dòng)直線l1,l2相交于P點(diǎn),與橢圓分別交于A、B與C、D不同四點(diǎn),直線OA、OB、OC、OD的斜率k1、k2、k3、k4滿足k1+k2=k3+k4.是否存在定點(diǎn)M、N,使得|PM|+|PN|為定值.存在,求出M、N點(diǎn)坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.2017年省內(nèi)事業(yè)單位面向社會(huì)公開招聘工作人員,為保證公平競爭,報(bào)名者需要參加筆試和面試兩部分,且要求筆試成績必須大于或等于90分的才有資格參加面試,90分以下(不含90分)則被淘汰.現(xiàn)有2000名競聘者參加筆試,參加筆試的成績按區(qū)間[30,50),[50,70),[70,90),[90,110),[110,130),[130,150]分段,其頻率分布直方圖如下圖所示(頻率分布直方圖有污損),但是知道參加面試的人數(shù)為500,且筆試成績在的人數(shù)為1440.
(1)根據(jù)頻率分布直方圖,估算競聘者參加筆試的平均成績;
(2)若在面試過程中每人最多有5次選題答題的機(jī)會(huì),累計(jì)答題或答錯(cuò)3題即終止答題.答對3題者方可參加復(fù)賽.已知面試者甲答對每一個(gè)問題的概率都相同,并且相互之間沒有影響.若他連續(xù)三次答題中答對一次的概率為$\frac{9}{64}$,求面試者甲答題個(gè)數(shù)X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在平面四邊形ABCD中,AB=3,AC=12,cos∠BAC=$\frac{29}{36}$,$\overrightarrow{AD}$•$\overrightarrow{CD}$=0,則BD的最大值為10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若MP和OM分別是角$\frac{7π}{6}$的正選線和余弦線,則( 。
A.MP<OM<0B.OM>0>MPC.OM<MP<0D.MP>0>OM

查看答案和解析>>

同步練習(xí)冊答案