6.已知函數(shù)f(x)=(a+1)lnx-ax,試討論f(x)在定義域內(nèi)的單調(diào)性.

分析 求出函數(shù)的導數(shù),通過討論a的范圍,求出函數(shù)的單調(diào)區(qū)間即可.

解答 解:∵f(x)=(a+1)lnx-ax,(x>0),
∴f′(x)=$\frac{-ax+a+1}{x}$,
①a>0時,令f′(x)>0,解得:0<x<$\frac{a+1}{a}$,令f′(x)<0,解得:x>$\frac{a+1}{a}$,
∴f(x)在(0,$\frac{a+1}{a}$)遞增,在($\frac{a+1}{a}$,+∞)遞減,
②-1≤a≤0時,-ax+a+1≥0,f′(x)≥0,
f(x)在(0,+∞)遞增,
③a<-1時,令f′(x)>0,解得:x>$\frac{a+1}{a}$,令f′(x)<0,解得:0<x$\frac{a+1}{a}$,
∴f(x)在(0,$\frac{a+1}{a}$)遞減,在($\frac{a+1}{a}$,+∞)遞增.

點評 本題考查了函數(shù)的單調(diào)性問題,考查導數(shù)的應(yīng)用以及分類討論思想,是一道中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

16.已知△OAB的頂點坐標為O(0,0),A(1,3),B(6,-2),又點P(-2,1),點Q是邊AB上一點,且$\overrightarrow{OQ}$•$\overrightarrow{AP}$=-10.
(1)求點Q的坐標;
(2)若R為線段OQ(含端點)上的一個動點,試求($\overrightarrow{RO}$+$\overrightarrow{RP}$)•($\overrightarrow{RA}$+$\overrightarrow{RB}$)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知某幾何體如圖所示,若四邊形ADMN為矩形,四邊形ABCD為菱形,且∠DAB=60°,平面ADNM⊥平面ABCD,E為AB中點,AD=2,AM=1.
(1)求證:AN∥平面MEC;
(2)在線段AM上是否存在點P,使二面角P-EC-D的大小為$\frac{π}{6}$?若存在,求出線段AP的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.函數(shù)f(x)=ex-$\frac{1}{x}$+2的零點所在的一個區(qū)間是( 。
A.(-1,0)B.(0,1)C.(1,2)D.(2,3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)f(x)=lnx+ax2-(2a+1)x,其中$a<\frac{1}{2}$.
(Ⅰ)當a=-2時,求函數(shù)f(x)的極大值;
(Ⅱ)若f(x)在區(qū)間(0,e)上僅有一個零點,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.在平面直角坐標系xoy中,直線$\left\{\begin{array}{l}x={x_0}+tcosα\\ y=tsinα\end{array}$,(t為參數(shù))與拋物線y2=2px(p>0)相交于橫坐標分別為x1,x2的A,B兩點
(1)求證:x02=x1x2;
(2)若OA⊥OB,求x0的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知不等式x2-2x+5-2a≥0
(Ⅰ)若不等式對于任意實數(shù)x恒成立,求實數(shù)a的取值范圍;
(Ⅱ)若存在實數(shù)a∈[4,6]使得該不等式成立,求實數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.垂直于x軸的直線與函數(shù)y=$\sqrt{x}$+$\frac{1}{x}$圖象的交點至多有( 。
A.0個B.1個C.2個D.無數(shù)個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.函數(shù)y=sin(2x-$\frac{π}{6}$)的最小正周期是(  )
A.$\frac{π}{4}$B.$\frac{π}{2}$C.πD.

查看答案和解析>>

同步練習冊答案