已知|
a
|=6,|
b
|=2,
a
b
的夾角為60°,若λ
b
-
a
a
垂直,則λ=
 
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:平面向量及應(yīng)用
分析:由題意可得(λ
b
-
a
)•
a
a
b
-
a
2
=λ×2×6•cos60°-36=0,由此求得λ的值.
解答: 解:由題意可得(λ
b
-
a
)•
a
a
b
-
a
2
=λ×2×6•cos60°-36=0,
即6λ=36,
解得 λ=6,
故答案為:6.
點(diǎn)評(píng):本題主要考查兩個(gè)向量的數(shù)量積的運(yùn)算,兩個(gè)向量共線的性質(zhì),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

點(diǎn)(2,1)到直線3x+4y-2=0的距離是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某幾何體的三視圖(單位:cm)如圖所示,則該幾何體的體積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a為實(shí)數(shù),函數(shù)F(x)=
x3-ax2+a2x     (x>a)
1
3
x3+ax2-a2x    (x≤a)
的導(dǎo)函數(shù)為g(x).
(Ⅰ) 求函數(shù)g(x)的解析式;
(Ⅱ)求函數(shù)g(x)的最小值;
(Ⅲ)當(dāng)x>a時(shí),求函數(shù)f(x)=F(x)-x的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b,c分別為△ABC內(nèi)角A,B,C的對(duì)邊,B+C=2A,且c=1,b=
3
則△ABC的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知線段AC=16cm,先截取AB=4cm作為長方體的高,再將線段BC任意分成兩段作為長方體的長和寬,則長方體的體積超過128cm3的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△AnBnCn中,記角An、Bn、Cn所對(duì)的邊分別為an、bn、cn,且這三角形的三邊長是公差為1的等差數(shù)列,若最小邊an=n+1,則
lim
n→∞
Cn
=(  )
A、
π
2
B、
π
3
C、
π
4
D、
π
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A(1,1),B(2,2),C(4,0),D(
12
5
,
16
5
),點(diǎn)P在線段CD垂直平分線上,求:
(1)線段CD垂直平分線方程;
(2)|PA|2+|PB|2取得最小值時(shí)P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A,B的坐標(biāo)分別是(-1,0),(1,0).直線AM、BM相交于點(diǎn)M,且它們的斜率之積為-1.
(1)求點(diǎn)M的軌跡E的方程;
(2)若過點(diǎn)H(0,h)(h>0)的兩直線l1和l2與軌跡E都只有一個(gè)交點(diǎn),且l1⊥l2,求h的值;
(3)在x軸上是否存在兩個(gè)定點(diǎn)C,D,使得點(diǎn)M到點(diǎn)C的距離與到點(diǎn)D的距離的比恒為
2
2
,若存在,求出定點(diǎn)C,D;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案