分析 由向量加法、數(shù)乘的幾何意義便可得到$\overrightarrow{BE}=-\frac{1}{2}\overrightarrow{AB}+\overrightarrow{AD}$,從而根據(jù)平面向量基本定理便可得出x,y值,從而求出x+y.
解答 解:$\overrightarrow{BE}=\overrightarrow{BC}+\overrightarrow{CE}=\overrightarrow{AD}+\frac{1}{2}\overrightarrow{CD}$=$-\frac{1}{2}\overrightarrow{AB}+\overrightarrow{AD}$;
又$\overrightarrow{BE}=x\overrightarrow{AB}+y\overrightarrow{AD}$,根據(jù)平面向量基本定理得:x=$-\frac{1}{2}$,y=1;
∴$x+y=\frac{1}{2}$.
故答案為:$\frac{1}{2}$.
點評 考查向量加法、數(shù)乘的幾何意義,以及相等向量和相反向量,平面向量基本定理.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{\sqrt{2}}}{2}$ | B. | $-\frac{{\sqrt{2}}}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ① | B. | ①② | C. | ①③ | D. | ②③ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ?n∈N*,Sn<an+1 | |
B. | ?n∈N*,an•an+1≤an+2 | |
C. | ?n0∈N*,a${\;}_{{n}_{0}}$+a${\;}_{{n}_{0}+2}$=2a${\;}_{{n}_{0}+1}$ | |
D. | ?n0∈N*,a${\;}_{{n}_{0}}$+a${\;}_{{n}_{0}+3}$=a${\;}_{{n}_{0}+1}$+a${\;}_{{n}_{0}+2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com