14.tan23°+tan97°-$\sqrt{3}$tan23°tan97°=(  )
A.-2B.-2$\sqrt{3}$C.-$\sqrt{3}$D.0

分析 由tan120°=tan(23°+97°),展開兩角和的正切后整理得答案.

解答 解:∵tan120°=tan(23°+97°)=$\frac{tan23°+tan97°}{1-tan23°tan97°}$,
且$tan120°=-\sqrt{3}$,
∴$\frac{tan23°+tan97°}{1-tan23°tan97°}$=-$\sqrt{3}$,
則$tan23°+tan97°=-\sqrt{3}+\sqrt{3}tan23°tan97°$,
即tan23°+tan97°-$\sqrt{3}$tan23°tan97°=$-\sqrt{3}$.
故選:C.

點(diǎn)評 本題考查兩角和與差的正切,考查靈活變形能力,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知直線l:y=x+b,圓C:x2+y2+2ax-2ay+2a2-4a=0(a>0).
(1)當(dāng)a=1時(shí),直線l與圓C相切,求b的值;
(2)當(dāng)b=4時(shí),求直線l被圓C所截得弦長的最大值;
(3)當(dāng)b=1時(shí),是否存在a,使得直線l與圓C相交于A,B兩點(diǎn),且滿足x1x2+y1y2=1?若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)$\overrightarrow{a}$=(cos25°sin25°)$\overrightarrow$=(sin20°,cos20°),若t是實(shí)數(shù),且$\overrightarrow{μ}$=$\overrightarrow{a}$+t$\overrightarrow$,求|$\overrightarrow{μ}$|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知sinθ=cos$\frac{θ}{2}$,則tan$\frac{θ}{2}$=±$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.若非零不等數(shù)列{an}的前n項(xiàng)和為Sn=$\frac{n({a}_{1}+{a}_{n})}{2}$,求證:數(shù)列{an}為等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.求函數(shù)f(x)=sinx[sinx-sin(x+$\frac{π}{3}$)]的最小正周期與最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015-2016學(xué)年遼寧大連十一中高一下學(xué)期段考二試數(shù)學(xué)(文)試卷(解析版) 題型:解答題

某中學(xué)團(tuán)委組織了“弘揚(yáng)奧運(yùn)精神,愛我中華”的知識(shí)競賽,從參加考試的學(xué)生中抽出60名學(xué)生,將其成績(均為整數(shù))分成六段后畫出如下部分頻率分布直方圖.觀察圖形給出的信息,回答下列問題:

(1)求第四小組的頻率,并補(bǔ)全這個(gè)頻率分布直方圖;

(2)估計(jì)這次考試的及格率(60分及以上為及格)和平均分;

(3)從成績是的學(xué)生中選兩人,求他們在同一分?jǐn)?shù)段的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015-2016學(xué)年遼寧大連十一中高一下學(xué)期段考二試數(shù)學(xué)(文)試卷(解析版) 題型:選擇題

樣本的平均數(shù)為,樣本的平均數(shù)為,那么樣本的平均數(shù)為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.用一個(gè)邊長為2的正方形硬紙,按各邊中點(diǎn)垂直折起四個(gè)小三角形,做成一個(gè)蛋巢,現(xiàn)將半徑為$\sqrt{2}$的球體放置于蛋巢上,則球體球心與蛋巢底面的距離為( 。
A.$\frac{\sqrt{2}+2}{2}$B.$\frac{\sqrt{6}+\sqrt{2}}{2}$C.$\frac{\sqrt{10}+\sqrt{2}}{2}$D.$\frac{\sqrt{10}-\sqrt{2}}{2}$

查看答案和解析>>

同步練習(xí)冊答案