20.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x,x>0}\\{{4}^{x},x≤0}\end{array}\right.$,則f(f(-1))的值為-2.

分析 直接利用分段函數(shù)化簡求解即可.

解答 解:函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x,x>0}\\{{4}^{x},x≤0}\end{array}\right.$,
則f(-1)=$\frac{1}{4}$,
f(f(-1))=f($\frac{1}{4}$)=log2$\frac{1}{4}$=-2.
故答案為:-2.

點評 本題考查分段函數(shù)的應(yīng)用,函數(shù)值的求法,考查計算能力.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖所示,在相距10cm的兩條平行線之間,有正方形A和長方形B,正方形A沿直線以每秒2cm的速度向右運動,長方形B固定不動.
(1)A和B兩個圖形有重疊部分的時間持續(xù)多少秒?
(2)最大重疊面積是多少?
(3)當正方形A和長方形B相遇時開始計時,設(shè)正方形A的運動時間為t,問當t為何值時,兩個圖形的重疊部分的面積是24cm2?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知集合A={1,3,x},B={1,$\sqrt{x}$},A∩B=B,則x=(  )
A.0或3B.3或9C.0或9D.1或9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.把正整數(shù)排列成如圖甲所示的三角形數(shù)陣,然后,擦去第奇數(shù)行中的奇數(shù)和第偶數(shù)行中的偶數(shù),得到如圖乙所示的三角形數(shù)陣,再把圖乙中的數(shù)按從小到大的順序排成一列,得到一個數(shù)列{an}.若an=902,則n=436.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知復(fù)數(shù)z=i(3+4i)(i為虛數(shù)單位),則z的模為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在平面直角坐標系xOy中,已知圓C:(x-a)2+(y-a+2)2=1,點A(0,2),若圓C上存在點M,滿足MA2+MO2=10,則實數(shù)a的取值范圍是0≤a≤3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知矩陣A的逆矩陣A-1=$[\begin{array}{l}{\frac{\sqrt{2}}{2}}&{\frac{\sqrt{2}}{2}}\\{-\frac{\sqrt{2}}{2}}&{\frac{\sqrt{2}}{2}}\end{array}]$.求曲線xy=1在矩陣A所對應(yīng)的變換作用下所得的曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.某中學(xué)共有1000名文科學(xué)生參加了該市高三第一次質(zhì)量檢查的考試,其中數(shù)學(xué)成績?nèi)绫硭荆?br />
數(shù)學(xué)成績分組[50,70)[70,90)[90,110)[110,130)[130,150]
人數(shù)60x400360100
(Ⅰ)為了了解同學(xué)們前段復(fù)習的得失,以便制定下階段的復(fù)習計劃,年級將采用分層抽樣的方法抽取100名同學(xué)進行問卷調(diào)查.甲同學(xué)在本次測試中數(shù)學(xué)成績?yōu)?5分,求他被抽中的概率;
(Ⅱ)年級將本次數(shù)學(xué)成績75分以下的學(xué)生當作“數(shù)學(xué)學(xué)困生”進行輔導(dǎo),請根據(jù)所提供數(shù)據(jù)估計“數(shù)學(xué)學(xué)困生”的人數(shù);
(Ⅲ)請根據(jù)所提供數(shù)據(jù)估計該學(xué)校文科學(xué)生本次考試的數(shù)學(xué)平均分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知曲線C的方程為$\frac{x^2}{4}+\frac{y^2}{5}$=1,以坐標原點為極點,x軸的正半軸為極軸建立極坐 標系,直線l的極坐標方程為$ρcos(θ-\frac{π}{4})=2\sqrt{2}$.
(Ⅰ)求直線l的直角坐標方程;
(Ⅱ)已知M是曲線C上任意一點,求點M到直線l距離的最小值.

查看答案和解析>>

同步練習冊答案